scispace - formally typeset
Search or ask a question

Showing papers by "Mary E. Wlodek published in 2016"


Journal ArticleDOI
TL;DR: The evidence surrounding long‐term intergenerational implications of being born small and/or experiencing stress during pregnancy on programming outcomes is discussed.
Abstract: Babies born small are at an increased risk of developing myriad adult diseases. While growth restriction increases disease risk in all individuals, often a second hit is required to unmask 'programmed' impairments in physiology. Programmed disease outcomes are demonstrated more commonly in male offspring compared with females, with these sex-specific outcomes partly attributed to different placenta-regulated growth strategies of the male and female fetus. Pregnancy is known to be a major risk factor for unmasking a number of conditions and can be considered a 'second hit' for women who were born small. As such, female offspring often develop impairments of physiology for the first time during pregnancy that present as pregnancy complications. Numerous maternal stressors can further increase the risk of developing a maternal complication during pregnancy. Importantly, these maternal complications can have long-term consequences for both the mother after pregnancy and the developing fetus. Conditions such as preeclampsia, gestational diabetes and hypertension as well as thyroid, liver and kidney diseases are all conditions that can complicate pregnancy and have long-term consequences for maternal and offspring health. Babies born to mothers who develop these conditions are often at a greater risk of developing disease in adulthood. This has implications as a mechanism for transmission of disease across generations. In this review, we discuss the evidence surrounding long-term intergenerational implications of being born small and/or experiencing stress during pregnancy on programming outcomes.

110 citations


Journal ArticleDOI
TL;DR: It is suggested that early exercise programs the heart for increased mass into adulthood, perhaps by an upregulation of protein synthesis based on greater phosphorylation of Akt Ser473.
Abstract: Being born small for gestational age increases the risk of developing adult cardiovascular and metabolic diseases. This study aimed to examine if early-life exercise could increase heart mass in the adult hearts from growth restricted rats. Bilateral uterine vessel ligation to induce uteroplacental insufficiency and fetal growth restriction in the offspring (Restricted) or sham surgery (Control) was performed on day 18 of gestation in WKY rats. A separate group of sham litters had litter size reduced to five pups at birth (Reduced litter), which restricted postnatal growth. Male offspring remained sedentary or underwent treadmill running from 5 to 9 weeks (early exercise) or 20 to 24 weeks of age (later exercise). Remarkably, in Control, Restricted, and Reduced litter groups, early exercise increased (P < 0.05) absolute and relative (to body mass) heart mass in adulthood. This was despite the animals being sedentary for ~4 months after exercise. Later exercise also increased adult absolute and relative heart mass (P < 0.05). Blood pressure was not significantly altered between groups or by early or later exercise. Phosphorylation of Akt Ser(473) in adulthood was increased in the early exercise groups but not the later exercise groups. Microarray gene analysis and validation by real-time PCR did not reveal any long-term effects of early exercise on the expression of any individual genes. In summary, early exercise programs the heart for increased mass into adulthood, perhaps by an upregulation of protein synthesis based on greater phosphorylation of Akt Ser(473).

24 citations


Journal ArticleDOI
TL;DR: Stressed control F2 males had increased expression of adrenal genes that regulate androgen signaling at 6 months, whereas expression increased in restricted male and female offspring at 12 months, suggesting that they independently program disease in offspring through different mechanisms.
Abstract: Low birth weight increases adult metabolic disease risk in both the first (F1) and second (F2) generation. Physiological stress during pregnancy in F1 females that were born small induces F2 fetal growth restriction, but the long-term metabolic health of these F2 offspring is unknown. Uteroplacental insufficiency (restricted) or sham (control) surgery was performed in F0 rats. F1 females (control, restricted) were allocated to unstressed or stressed pregnancies. F2 offspring exposed to maternal stress in utero had reduced birth weight. At 6 months, F2 stressed males had elevated fasting glucose. In contrast, F2 restricted males had reduced pancreatic β-cell mass. Interestingly, these metabolic deficits were not present at 12 month. F2 males had increased adrenal mRNA expression of steroidogenic acute regulatory protein and IGF-1 receptor when their mothers were born small or exposed to stress during pregnancy. Stressed control F2 males had increased expression of adrenal genes that regulate androgen signaling at 6 months, whereas expression increased in restricted male and female offspring at 12 months. F2 females from stressed mothers had lower area under the glucose curve during glucose tolerance testing at 12 months compared with unstressed females but were otherwise unaffected. If F1 mothers were either born small or exposed to stress during her pregnancy, F2 offspring had impaired physiological outcomes in a sex- and age-specific manner. Importantly, stress during pregnancy did not exacerbate disease risk in F2 offspring of mothers born small, suggesting that they independently program disease in offspring through different mechanisms.

23 citations


Journal ArticleDOI
TL;DR: Identifying the link between an adverse intrauterine environment and the programmed kidney disease risk in adulthood may facilitate the development of strategies to alleviate the epidemics of cardiorenal disease worldwide, in addition to understanding why males are more susceptible to adult‐onset cardiovascular diseases.
Abstract: The intrauterine environment is critical for the development of the foetus. Barker and colleagues were the first to identify that adverse perturbations during foetal development are associated with an increased risk of developing diseases in adulthood, including cardiorenal disease. Specifically for the kidney, perturbations in utero can lead to nephron deficits and renal dysfunction by a number of mechanisms. Altered programming of nephron number is associated with an increased risk of developing kidney disease via glomerular hypertrophy and reduced vasodilative capacity of the renal blood vessels; both of which would contribute to hypertension in adulthood, with males being more susceptible to disease outcomes. Additionally, alterations in the renin-angiotensin system (RAS) such as an upregulation or downregulation of specific receptors, depending on the nature of the insult, have also been implicated in the development of renal dysfunction. Sex-specific differences in the expression of the RAS during late gestation and in the early postnatal environment have also been identified. Extensive research has demonstrated that both uteroplacental insufficiency and maternal malnutrition alter renal development in utero. Equally, exposure to maternal diabetes and maternal obesity during development are also associated with an increased risk of developing renal disease, however, the mechanism behind this association is poorly understood. Therefore, identifying the link between an adverse intrauterine environment and the programmed kidney disease risk in adulthood may facilitate the development of strategies to alleviate the epidemics of cardiorenal disease worldwide, in addition to understanding why males are more susceptible to adult-onset cardiovascular diseases.

23 citations


Journal ArticleDOI
TL;DR: Early pregnancy interventions targeted to obese mothers may prevent their children from developing cardiometabolic disease in adulthood, including type 2 diabetes, obesity, and hypertension during pregnancy.
Abstract: Obesity is a major public health crisis, with 1.6 billion adults worldwide being classified as overweight or obese in 2014. Therefore, it is not surprising that the number of women who are overweight or obese at the time of conception is increasing. Obesity during pregnancy is associated with the development of gestational diabetes and preeclampsia. The developmental origins of health and disease hypothesis proposes that perturbations during critical stages of development can result in adverse fetal changes that leads to an increased risk of developing diseases in adulthood. Of particular concern, children born to obese mothers are at a greater risk of developing cardiometabolic disease. One subset of the population who are predisposed to developing obesity are children born small for gestational age, which occurs in 10% of pregnancies worldwide. Epidemiological studies report that these growth-restricted children have an increased susceptibility to type 2 diabetes, obesity, and hypertension. Importantly during pregnancy, growth-restricted females have a higher risk of developing cardiometabolic disease, indicating that they may have an exacerbated phenotype if they are also overweight or obese. Thus, the development of early pregnancy interventions targeted to obese mothers may prevent their children from developing cardiometabolic disease in adulthood.

18 citations


Journal ArticleDOI
TL;DR: Investigating the effects of stress during pregnancy on the long‐term adrenal, metabolic and cardio‐renal health of female rats that were born small suggests that being born small or being stressed during pregnancy does not exacerbate the long-term adverse health outcomes after pregnancy.
Abstract: Key points Women born small are at an increased risk of developing pregnancy complications. Stress may further increase a woman's likelihood for an adverse pregnancy. Adverse pregnancy adaptations can lead to long-term diseases even after her pregnancy. The current study investigated the effects of stress during pregnancy on the long-term adrenal, metabolic and cardio-renal health of female rats that were born small. Stress programmed increased adrenal Mc2r gene expression, a higher insulin secretory response to glucose during intraperitoneal glucose tolerance test (+36%) and elevated renal creatinine clearance after pregnancy. Females that were born small had increased homeostatic model assessment-insulin resistance and elevated systolic blood pressure after pregnancy, regardless of stress exposure. These findings suggest that being born small or being stressed during pregnancy programs long-term adverse health outcomes after pregnancy. However, stress in pregnancy does not exacerbate the long-term adverse health outcomes for females that were born small. Abstract Females born small are more likely to experience complications during their pregnancy, including pregnancy-induced hypertension, pre-eclampsia and gestational diabetes. The risk of developing complications is increased by stress exposure during pregnancy. In addition, pregnancy complications may predispose the mother to diseases after pregnancy. We determined whether stress during pregnancy would exacerbate the adrenal, metabolic and cardio-renal dysfunction of growth-restricted females in later life. Late gestation bilateral uterine vessel ligation was performed in Wistar Kyoto rats to induce growth restriction. At 4 months, growth-restricted and control female offspring were mated with normal males. Those allocated to the stressed group had physiological measurements [metabolic cage, tail cuff blood pressure, intraperitoneal glucose tolerance test (IPGTT)] conducted during pregnancy whilst the unstressed groups were unhandled. After the completion of pregnancy, dams were aged to 12 months and blood pressure, and metabolic and renal function were assessed. At 13 months, adrenal glands, pancreases and plasma were collected at post-mortem. Females stressed during pregnancy had increased adrenal Mc2r gene expression (+22%), higher insulin secretory response to glucose during IPGTT (+36%) and higher creatinine clearance (+29%, indicating increased estimated glomerular filtration rate). In contrast, females that were born small had increased homeostatic model assessment-insulin resistance (+54%), increased water intake (+23%), urine output (+44%) and elevated systolic blood pressure (+7%) regardless of exposure to stress. Our findings suggest that low maternal birth weight and maternal stress exposure during pregnancy are both independently detrimental for long-term adrenal, metabolic and cardio-renal health of the mother, although their effects were not exacerbated.

15 citations


Journal ArticleDOI
TL;DR: Observations add support to the view that altered respiratory modulation of sympathetic activity represents a common mechanism involved in the development of several forms of hypertension.

7 citations


Journal Article
TL;DR: Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia, 2Department ofphysiology, Anatomy and Microbiology, La Trobe University, Bundoora, Vic 3083, Australian, 3School of Exercise and Nutrition Sciences, Deakin University, Burwood,VIC 3125, Australia and 4School of exercise and nutrition Sciences, TheUniversity of Queensland, St. Lucia, QLD 4072, Australia.
Abstract: small on high fat diet D.H. Hryciw,1 V.F.I. Richter,1 D. Mahizir,1 K. Anevska,1,2 A.J. Jeffries,1 G.D. Wadley,1,3 K.M. Moritz4 and M.E. Wlodek,1 1Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia, 2Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3083, Australia, 3School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia and 4School of Exercise and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.