scispace - formally typeset
Search or ask a question

Showing papers by "Michael Aviram published in 2016"


Journal ArticleDOI
TL;DR: Overall, SPs showed pro‐atherogenic effects on macrophages as observed by cytotoxicity, increased oxidative stress and TG accumulation, which is in line with previous reports on nanoparticle toxicity.
Abstract: Nanoparticle research has focused on their toxicity in general, while increasing evidence points to additional specific adverse effects on atherosclerosis development. Arterial macrophage cholesterol and triglyceride (TG) accumulation and foam cell formation are the hallmark of early atherogenesis, leading to cardiovascular events. To investigate the in vitro atherogenic effects of silicon dioxide (SiO2 ), J774.1 cultured macrophages (murine cell line) were incubated with SiO2 nanoparticle (SP, d = 12 nm, 0-20 µg/mL), followed by cellular cytotoxicity, oxidative stress, TG and cholesterol metabolism analyses. A significant dose-dependent increase in oxidative stress (up to 164%), in cytotoxicity (up to 390% measured by lactate dehydrogenase (LDH) release), and in TG content (up to 63%) was observed in SiO2 exposed macrophages compared with control cells. A smaller increase in macrophage cholesterol mass (up to 22%) was noted. TG accumulation in macrophages was not due to a decrease in TG cell secretion or to an increased TG biosynthesis rate, but was the result of attenuated TG hydrolysis secondary to decreased lipase activity and both adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) protein expression (by 42 and 25%, respectively). Overall, SPs showed pro-atherogenic effects on macrophages as observed by cytotoxicity, increased oxidative stress and TG accumulation. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 713-723, 2016.

45 citations


Journal ArticleDOI
TL;DR: PON1 overexpression in mice protects against AAA progression by reducing oxidative stress, apoptosis and inflammation, suggesting that strategies aimed at increasing PON1 activity could prevent AAA.
Abstract: Abdominal aortic aneurysm (AAA) is a permanent dilation of the aorta due to excessive proteolytic, oxidative and inflammatory injury of the aortic wall. We aimed to identify novel mediators involved in AAA pathophysiology, which could lead to novel therapeutic approaches. For that purpose, plasma from four AAA patients and four controls were analysed by a label-free proteomic approach. Among identified proteins, paraoxonase-1 (PON1) was decreased in plasma of AAA patients compared with controls, which was further validated in a bigger cohort of samples by ELISA. The phenylesterase enzymatic activity of PON1 was also decreased in serum of AAA patients compared with controls. To address the potential role of PON1 as a mediator of AAA, experimental AAA was induced by aortic elastase perfusion in wild-type (WT) mice and human transgenic PON1 (HuTgPON1) mice. Similar to humans, PON1 activity was also decreased in serum of elastase-induced AAA mice compared with healthy mice. Interestingly, overexpression of PON1 was accompanied by smaller aortic dilation and higher elastin and vascular smooth muscle cell (VSMC) content in the AAA of HuTgPON1 compared with WT mice. Moreover, HuTgPON1 mice display decreased oxidative stress and apoptosis, as well as macrophage infiltration and monocyte chemoattractant protein-1 (MCP1) expression, in elastase-induced AAA. In conclusion, decreased circulating PON1 activity is associated with human and experimental AAA. PON1 overexpression in mice protects against AAA progression by reducing oxidative stress, apoptosis and inflammation, suggesting that strategies aimed at increasing PON1 activity could prevent AAA.

18 citations


Journal ArticleDOI
TL;DR: Similar apoptotic and oxidative effects were found in macrophages from apoE−/− mice treated with PJ or AAPH, which may provide novel mechanisms for the antiatherogenicity of PJ.
Abstract: At high concentrations, polyphenols induce cell death, and the polyphenols-rich pomegranate juice (PJ), known for its antioxidative/antiatherogenic properties, can possibly affect cell death, including macrophage death involved in atherogenesis. In the present study, apoptotic/necrotic macrophage death was analyzed in J774A.1 macrophages and in peritoneal macrophages isolated from atherosclerotic apoE-/- mice treated with PJ. The effects of PJ were compared with those of the free radical generator 2, 2'-azobis (2-amidinopropane) dihydrochloride (AAPH). Both PJ and AAPH significantly increased J774A.1 macrophage death; however, flow cytometric and microscopic analyses using annexin V/propidium iodide revealed that PJ increased the early apoptosis of the macrophage dose dependently (up to 2.5-fold, P < 0.01), whereas AAPH caused dose-dependent increases in late apoptosis/necrosis (up to 12-fold, P < 0.001). Unlike PJ, AAPH-induced macrophage death was associated with increased intracellular oxidative stress (up to 7-fold, P < 0.001) and with lipid stress demonstrated by triglyceride accumulation (up to 3-fold, P < 0.01) and greater chromatic vesicle response to culture medium (up to 5-fold, P < 0.001). Accordingly, recombinant paraoxonase 1, which hydrolyzes oxidized lipids, attenuated macrophage death induced by AAPH, but not by PJ. Similar apoptotic and oxidative effects were found in macrophages from apoE-/- mice treated with PJ or AAPH. As macrophage apoptotic/necrotic death has considerable impact on atherosclerosis progression, these findings may provide novel mechanisms for the antiatherogenicity of PJ.

16 citations


Journal ArticleDOI
TL;DR: PJ protected macrophages from CS-induced increases in intracellular ROS levels and cholesterol accumulation, as well as the attenuated efflux of cholesterol, indicating that CS stimulates macrophage oxidation and activates PON2 as a possible compensatory response to the oxidative burden.

13 citations


Journal ArticleDOI
25 Jun 2016-Lipids
TL;DR: Compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride metabolizing enzymes.
Abstract: Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride metabolizing enzymes.

12 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of exogenous antioxidants and pro-oxidants on macrophage foam cell formation was investigated and the results showed that HDL-associated paraoxonase1 (PON1) is a key endogenous lipolactonase antioxidant responsible for many of the HDL's antiatherogenic characteristics.
Abstract: DOI:10.1097/MOL.0000000000000287 Atherosclerosis is an inflammatory disease, which involves interactions among serum lipoproteins and arterial wall cells. Macrophages are the predominant cells during early atherogenesis as they accumulate cholesterol and are transformed to lipid-rich foam cells. Macrophage foam cell formation involves enhanced uptake of LDL or oxidized (Ox)-LDL, increased cholesterol biosynthesis, and/or attenuated HDL-mediated cholesterol efflux from macrophages [1 && ]. Oxidative stress contributes to atherosclerosis development and recent reports have improved our understanding as to how endogenous or exogenous antioxidants or pro-oxidants regulate foam cell formation and thus either attenuate or accelerate atherosclerosis progression. In a thorough investigation comparing lipid metabolism and cellular oxidative stress in lipid metabolizing cells (macrophages, liver and intestinal cells), the selective biological features of these cells, as well as their modulation by antioxidants or pro-oxidants, have been recently described. Interestingly, the antioxidative properties of the HDLassociated paraoxonase1 (PON1) were shown to be macrophage specific, as PON1 did not decrease cellular oxidative stress in the other lipid-metabolizing cells [1 && ]. PON1 is a key endogenous lipolactonase antioxidant responsible for many of the HDL’s antiatherogenic characteristics, including HDL-mediated cholesterol efflux from macrophages. Furthermore, HDL (mostly, the HDL3 subfraction) stimulated PON1 antiatherogenic biological activities in a macrophage model system, as cholesterol efflux from macrophages was significantly increased both in vivo and in vitro by a combination of HDLþPON1 in comparison with HDL or PON1 alone [2]. Interestingly, the antiatherogenic effects of HDLþPON1 were increased by exogenous antioxidants including the dietary polyphenol quercetin and the hypocholesterolemic drug simvastatin [2]. In a clinical aspect, exogenous antioxidants such as the polyphenol (punicalagin)-rich pomegranate extract together with statins were shown to synergistically reduce oxidative stress and improve lipid status

12 citations


Journal ArticleDOI
TL;DR: It is demonstrated that atherosclerotic plaque constituents enhance macrophage cellular oxidative stress, and accumulation of cholesterol and triglycerides, as shown in both in vivo and in vitro model systems.

11 citations


Journal ArticleDOI
TL;DR: Exposure of macrophages was found to be pro-atherogenic as it significantly increased triglyceride mass, up to 60%, and decreased high-density lipoprotein-mediated cholesterol efflux,up to 27%.
Abstract: Carbon monoxide (CO) is a major constituent of traffic-related air pollution and is also produced endogenously under conditions of oxygen-mediated stress. It has been shown to affect both oxidative stress and inflammation. However, its role in lipid metabolism has been neglected. Using short exposure times, the effect of CO on J774A.1 macrophage atherogenic functions was investigated up to 16 h after exposure. Exposure of macrophages was found to be pro-atherogenic as it significantly increased triglyceride mass, up to 60%, and decreased high-density lipoprotein-mediated cholesterol efflux, up to 27%. In contrast, paraoxonase 2 lactonase activity was increased, up to 65%, and cellular oxidative stress was attenuated by 29%, compared with the control cells. The above results on lipid metabolism may lead to arterial macrophage foam cell formation, the hallmark of early atherogenesis.

8 citations


Journal ArticleDOI
TL;DR: Protein(s) in the homogenate interact with HDL protein(s), leading to release of Apo A1 from the HDL particle, a process that was associated with an increase in HDL diameter and with impaired HDL anti-oxidant activity.
Abstract: High density lipoprotein (HDL) anti-atherogenic functions are closely associated with cardiovascular disease risk factor, and are dictated by its composition, which is often affected by environmental factors. The present study investigates the effects of the human carotid plaque constituents on HDL composition and biological functions. To this end, human carotid plaques were homogenized and incubated with HDL. Results showed that after incubation, most of the apolipoprotein A1 (Apo A1) protein was released from the HDL, and HDL diameter increased by an average of approximately 2 nm. In parallel, HDL antioxidant activity was impaired. In response to homogenate treatment HDL could not prevent the accelerated oxidation of LDL caused by the homogenate. Boiling of the homogenate prior to its incubation with HDL abolished its effects on HDL composition changes. Moreover, tryptophan fluorescence quenching assay revealed an interaction between plaque component(s) and HDL, an interaction that was reduced by 50% upon using pre-boiled homogenate. These results led to hypothesize that plaque protein(s) interacted with HDL-associated Apo A1 and altered the HDL composition. Immuno-precipitation of Apo A1 that was released from the HDL after its incubation with the homogenate revealed a co-precipitation of three isomers of actin. However, beta-actin alone did not significantly affect the HDL composition, and yet the active protein within the plaque was elusive. In conclusion then, protein(s) in the homogenate interact with HDL protein(s), leading to release of Apo A1 from the HDL particle, a process that was associated with an increase in HDL diameter and with impaired HDL anti-oxidant activity.

6 citations


Journal ArticleDOI
TL;DR: Analysis of the effect of the endogenous antioxidant paraoxonase 1 (PON1), a high-density lipoprotein-associated lipolactonase that hydrolyses lipid peroxides and attenuates atherogenesis, on circadian gene expression in C57BL/6J and PON1KO mice fed a normal chow diet or high-fat diet, supported by circadian bioluminescence reporter assessments.
Abstract: The circadian timing system regulates key aspects of mammalian physiology. Here, we analyzed the effect of the endogenous antioxidant paraoxonase 1 (PON1), a high-density lipoprotein-associated lipolactonase that hydrolyses lipid peroxides and attenuates atherogenesis, on circadian gene expression in C57BL/6J and PON1KO mice fed a normal chow diet or a high-fat diet (HFD). Expression levels of core-clock transcripts Nr1d1, Per2, Cry2 and Bmal1 were altered in skeletal muscle in PON1-deficient mice in response to HFD. These findings were supported by circadian bioluminescence reporter assessments in mouse C2C12 and human primary myotubes, synchronized in vitro, where administration of PON1 or pomegranate juice modulated circadian period length.

6 citations


01 Jan 2016
TL;DR: In this article, the effect of prolonged resveratrol intake on paraoxonase-1 levels in rats, and its role as a potential prophylactic treatment in organophosphate poisoning was evaluated.
Abstract: Background: Paraoxonase-1, an organophosphorous-hydrolyzing enzyme, was shown to provide protection against organophosphates poisoning in vivo. In vitro findings suggest that the phytoalexin resveratrol can elevate paraoxo nase-1 levels and thus may provide protection against organophosphate poisoning. This study was conducted to evaluate the effect of prolonged resveratrol intake on paraoxonase-1 levels in rats, and its role as a potential prophylactic treatment in organophosphate poisoning. Methods: 30 adult male albino Sprague–Dawley rats were randomly assigned into three groups: rats receiving no resveratrol (Control group, n = 10), rats treated once daily with oral gavage of ethanol only (Sham group, n = 6), and rats treated once daily with oral gavage of resveratrol (50 mg/kg) (Study group, n = 14). Following 2 weeks of feeding, all rats were exposed to 1.4LD50 paraoxon (450 mg/kg, intramuscular; 0.5 ml/kg) and monitored for severity of clinical signs and mortality. Paraoxonase-1 activity level was recorded in the beginning of the study and 2 weeks later, just before exposure to paraoxon. Results: We found a significant decrease in paraoxonase-1 activity levels in all groups compared to baseline levels (p = 0.05), but no significant difference was observed between the study group and the controls (p = 0.7). Following exposure to paraoxon, all animals suffered from severe convulsions and died within minutes. Conclusions: Following resveratrol intake in rats, paraoxonase-1 activity levels decreased. We found no beneficial effects in using resveratrol as a prophylactic medical countermeasure.

Journal ArticleDOI
TL;DR: In vitro findings suggest that the phytoalexin resveratrol can elevate paraoxonase-1 levels and thus may provide protection against organophosphate poisoning, and in vitro effects found no beneficial effects in using resver atrol as a prophylactic medical countermeasure.
Abstract: Paraoxonase-1, an organophosphorous-hydrolyzing enzyme, was shown to provide protection against organophosphates poisoning in vivo. In vitro findings suggest that the phytoalexin resveratrol can elevate paraoxonase-1 levels and thus may provide protection against organophosphate poisoning. This study was conducted to evaluate the effect of prolonged resveratrol intake on paraoxonase-1 levels in rats, and its role as a potential prophylactic treatment in organophosphate poisoning. 30 adult male albino Sprague–Dawley rats were randomly assigned into three groups: rats receiving no resveratrol (Control group, n = 10), rats treated once daily with oral gavage of ethanol only (Sham group, n = 6), and rats treated once daily with oral gavage of resveratrol (50 mg/kg) (Study group, n = 14). Following 2 weeks of feeding, all rats were exposed to 1.4LD50 paraoxon (450 mg/kg, intramuscular; 0.5 ml/kg) and monitored for severity of clinical signs and mortality. Paraoxonase-1 activity level was recorded in the beginning of the study and 2 weeks later, just before exposure to paraoxon. We found a significant decrease in paraoxonase-1 activity levels in all groups compared to baseline levels (p = 0.05), but no significant difference was observed between the study group and the controls (p = 0.7). Following exposure to paraoxon, all animals suffered from severe convulsions and died within minutes. Following resveratrol intake in rats, paraoxonase-1 activity levels decreased. We found no beneficial effects in using resveratrol as a prophylactic medical countermeasure.