scispace - formally typeset
Search or ask a question

Showing papers by "Michael D. Prados published in 2001"


Journal Article
TL;DR: The results suggest that analysis of prognostic markers in GBM is complex, and maximal information may require analysis of subgroups based on age and the status of specific markers such as p53, and suggest a specific group of patients on which to focus promising therapies targeting EGFR.
Abstract: Glioblastoma multiforme (GBM) carries a dismal prognosis. However, a range of survival times exists, and parameters that define prognostic groups may help to optimize treatment. To identify such prognostic groups, we analyzed tumor tissue from 110 cases of newly diagnosed GBM from two clinical protocols. Similar to other studies, we found no association of epidermal growth factor receptor (EGFR) overexpression (as assessed by immunohistochemistry), p53 immunopositivity, or p53 mutation with survival in the entire sample. However, EGFR overexpression showed trends toward worse prognosis in patients younger than the median age, but better prognosis in patients older than the median age. This interaction of EGFR with age group was statistically significant and led us to focus our further analyses on the younger patients. In this group, a statistically significant association of EGFR overexpression with worse survival was identified in the p53-negative but not p53-positive tumors. We found a similar result after screening these cases for mutations in p53: EGFR overexpression was negatively associated with survival only in the p53 wild-type cases. To confirm this unexpected result, this finding was reproduced in a validation sample of an additional 42 tumors from younger patients on the same two clinical protocols. This complex relationship between EGFR and p53 in younger patients remained in a multivariate analysis that incorporated additional prognostic variables. The results suggest that analysis of prognostic markers in GBM is complex, and maximal information may require analysis of subgroups based on age and the status of specific markers such as p53. In addition, they suggest a specific group of patients on which to focus promising therapies targeting EGFR.

275 citations


Journal Article
TL;DR: Evaluation of metabolic changes with proton MR spectroscopy and structural changes with MR imaging improved tissue discrimination and provided correlation with histologic findings.
Abstract: BACKGROUND AND PURPOSE: The diagnosis of brain tumors after high-dose radiation therapy is frequently limited by the lack of metabolic discrimination available with conventional imaging methods. The purpose of this study was to use proton MR spectroscopy to investigate serial changes in recurrent malignant gliomas after gamma knife radiosurgery to characterize tissue response to high-dose radiation. METHODS: Eighteen patients with recurrent gliomas were studied with MR imaging and 3D proton MR spectroscopic imaging at the time of radiosurgery and at regular time points thereafter. Choline (Cho) and N-acetyl aspartate levels were calculated on a voxel-by-voxel basis and compared with levels found in normal tissue and with levels observed at previous time points. The results of the spectral analysis were then compared with the radiologic findings. Statistical comparisons were precluded by the small sample sizes involved. RESULTS: Response within the gamma knife target was observed as a reduction of Cho levels and an increase in lactate/lipid levels, typically within 6 months of treatment. Increases in Cho correlated with poor radiologic response and suggested tumor recurrence, confirmed histologically in six cases. The development of a spectral abnormality preceded a coincident increase in contrast enhancement by 1 to 2 months in nine cases. CONCLUSION: Proton MR spectroscopic imaging provided diagnostic and monitoring information before and after radiosurgery. Evaluation of metabolic changes with proton MR spectroscopy and structural changes with MR imaging improved tissue discrimination and provided correlation with histologic findings.

158 citations


Journal ArticleDOI
TL;DR: In this prospective Phase III study, no survival or PFS benefit was seen with accelerated hyperfractionated irradiation to 70.4 Gy, nor was any benefit seen with DFMO as a radiosensitizer, and standard fractionation to 59.4Gy remains the treatment of choice for newly diagnosed patients with glioblastoma multiforme.
Abstract: Purpose: To report the results of a prospective Phase III trial for patients with newly diagnosed glioblastoma multiforme (GBM), treated with either accelerated hyperfractionated irradiation with or without difluromethylornithine (DFMO) or standard fractionated irradiation with or without DFMO. Methods and Materials: Adult patients with newly diagnosed GBM were registered and randomized following surgery to one of 4 treatment arms: Arm A, accelerated hyperfractionation alone using 2 fractions a day of 1.6 Gy to a total dose of 70.4 Gy in 44 fractions; Arm B, accelerated hyperfractionation as above plus DFMO 1.8 gm/m2 by mouth every 8 h beginning one week before radiation until the last fraction was given; Arm C, single-fraction irradiation of 1.8 Gy/day to 59.4 Gy; Arm D, single-fraction irradiation as in Arm C plus DFMO given as in Arm B. Patients were followed for progression-free survival (PFS) and overall survival (OS), as well as for toxicity. Eligibility required histologically proven GBM, age ≥18, Karnofsky performance status (KPS) ≥60, and no prior chemotherapy or radiotherapy. Adjuvant chemotherapy was not used in this protocol. Results: A total of 231 eligible patients were enrolled. There were 95 men and 136 women with a median age of 57 years, and median KPS of 90. Extent of resection was total in 23, subtotal in 152, and biopsy only in 56 patients. The 4 arms were balanced with respect to age, KPS, and extent of resection. Times to event measurements are from date of diagnosis. Median OS and PFS were 40 and 19 weeks for Arm A; 42 and 22 weeks for Arm B; 37 and 16 weeks for Arm C; and 44 and 19 weeks for Arm D ( p = 0.48 for survival; p = 0.32 for PFS). Comparison of the 2 arms treated with DFMO to the 2 arms without DFMO revealed no difference in OS (37 weeks vs. 42 weeks, p = 0.12) or PFS and thus no benefit to the use of DFMO. Comparison of the 2 standard fractionation arms to the 2 accelerated hyperfractionation arms also resulted in no difference in OS (42 weeks vs. 41 weeks, p = 0.75) or PFS, showing no benefit to accelerated hyperfractionated irradiation. Conclusions: In this prospective Phase III study, no survival or PFS benefit was seen with accelerated hyperfractionated irradiation to 70.4 Gy, nor was any benefit seen with DFMO as a radiosensitizer. Standard fractionated irradiation to 59.4 Gy remains the treatment of choice for newly diagnosed patients with glioblastoma multiforme.

126 citations


Journal ArticleDOI
TL;DR: Older GM patients are less likely to have good responses to postoperative external beam radiation therapy, and Karnofsky Performance Scale score before radiation treatment and extent of surgical resection are additional predictors of radiographically assessed radiation response in GM.
Abstract: OBJECTIVE: Advanced age is a strong predictor of shorter survival in patients with glioblastoma multiforme (GM), especially for those who receive multimodality treatment. Radiographically assessed tumor response to external beam radiation therapy is an important prognostic factor in GM. We hypothesized that older GM patients might have more radioresistant tumors. METHODS: We studied radiographically assessed response to external beam radiation treatment (five-level scale) in relation to age and other prognostic factors in a cohort of 301 GM patients treated on two prospective clinical protocols. A total of 223 patients (74%) were assessable for radiographically assessed radiation response. A proportional odds ordinal regression model was used for univariate and multivariate analysis. RESULTS: Younger age (P = 0.006), higher Karnofsky Performance Scale score before radiotherapy (P = 0.027), and more extensive surgical resection (P = 0.028) predicted better radiation response in univariate analyses. Results were similar when clinical criteria were used to classify an additional 61 patients without radiographically assessed radiation response (stable versus progressive disease). In multivariate analyses, age and extent of resection were significant independent predictors of radiation response (P < 0.05); Karnofsky Performance Scale score was of borderline significance (P = 0.07). CONCLUSION: Older GM patients are less likely to have good responses to postoperative external beam radiation therapy. Karnofsky Performance Scale score before radiation treatment and extent of surgical resection are additional predictors of radiographically assessed radiation response in GM.

84 citations


Journal Article
TL;DR: The results indicate that genetic events underlie the well-known effects of age on survival in grade III astrocytoma and demonstrate the importance of molecular classification in astroCytic tumors.
Abstract: Astrocytomas are brain tumors with variable responses to radiation and chemotherapy. Tumor grade and patient age are important prognostic factors but do not account for the variability in clinical outcome. We hypothesized that genetic subgroups play a role in the outcome of grade III astrocytomas and studied 80 grade III astrocytomas by comparative genomic hybridization. Some chromosomal aberrations (+7p/q, -9p, -10q, -13q, +19q) were related to aberrations that are frequent in grade IV astrocytoma, whereas others (+10p, -11q, +11p, -Xq) were more frequent in grade III astrocytoma. +7p, +19 and -4q were more frequent in tumors from older patients while -11p was more frequent in tumors from younger patients. Finally, gains of 7p and 7q were associated with shorter patient survival, independent of age. Our results indicate that genetic events underlie the well-known effects of age on survival in grade III astrocytoma and demonstrate the importance of molecular classification in astrocytic tumors.

65 citations


Journal ArticleDOI
TL;DR: Full-spectrum antitumor activity, good safety profile with nonoverlapping toxicities, an oral formulation, and the ability to overcome resistance to nitrosoureas make temozolomide appealing for combination therapies.

24 citations