scispace - formally typeset
Search or ask a question

Showing papers by "Michael J. Pivovaroff published in 2017"


Journal ArticleDOI
TL;DR: The axion-photon coupling strength of the CERN Axion Solar Telescope (CAST) was shown to be at least 0.02$ eV in the first vacuum phase (2003-2004) with low-background x-ray detectors and a new xray telescope as mentioned in this paper.
Abstract: During 2003--2015, the CERN Axion Solar Telescope (CAST) has searched for $a\to\gamma$ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. In its final phase of solar axion searches (2013--2015), CAST has returned to evacuated magnet pipes, which is optimal for small axion masses. The absence of a significant signal above background provides a world leading limit of $g_{a\gamma} < 0.66 \times 10^{-10} {\rm GeV}^{-1}$ (95% C.L.) on the axion-photon coupling strength for $m_a \lesssim 0.02$ eV. Compared with the first vacuum phase (2003--2004), the sensitivity was vastly increased with low-background x-ray detectors and a new x-ray telescope. These innovations also serve as pathfinders for a possible next-generation axion helioscope.

752 citations


Posted Content
Yonit Hochberg1, Yonit Hochberg2, A. N. Villano3, Andrei Afanasev4  +238 moreInstitutions (98)
TL;DR: The white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.
Abstract: This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.

464 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented a catalog of hard X-ray sources in a square-degree region surveyed by the Nuclear Spectroscopic Telescope Array (NuSTAR) in the direction of the Norma spiral arm.
Abstract: We present a catalog of hard X-ray sources in a square-degree region surveyed by the Nuclear Spectroscopic Telescope Array (NuSTAR) in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and the typical and maximum exposure depths are 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 × 10^(−14) and 4 × 10^(−14) erg s^(−1) cm^(−2) in the 3–10 and 10–20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected, and 10 are detected with low significance; 8 of the 38 sources are expected to be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multiwavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of ≈10–20 keV, consistent with the Galactic ridge X-ray emission spectrum but lower than the temperatures of CVs near the Galactic center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic center. The NuSTAR logN–logS distribution in the 10–20 keV band is consistent with the distribution measured by Chandra at 2–10 keV if the average source spectrum is assumed to be a thermal model with kT ≈ 15 keV, as observed for the CV candidates.

25 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented a catalog of hard X-ray sources in a square-degree region surveyed by NuSTAR in the direction of the Norma spiral arm, and identified the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables.
Abstract: We present a catalog of hard X-ray sources in a square-degree region surveyed by NuSTAR in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and typical and maximum exposure depths of 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of $5\times10^{-14}$ and $4\times10^{-14}$ erg s$^{-1}$ cm$^{-2}$ in the 3-10 and 10-20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected and ten are detected with low significance; eight of the 38 sources are expected to be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multi-wavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of $\approx$10-20 keV, consistent with the Galactic Ridge X-ray emission spectrum but lower than temperatures of CVs near the Galactic Center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic Center. The NuSTAR log$N$-log$S$ distribution in the 10-20 keV band is consistent with the distribution measured by Chandra at 2-10 keV if the average source spectrum is assumed to be a thermal model with $kT\approx15$~keV, as observed for the CV candidates.

13 citations