scispace - formally typeset
Search or ask a question

Showing papers by "Michael W. Werner published in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors present Spitzer 10-35 micrometers spectroscopic data centered at both stars and identify warm, unresolved excess emission in the close vicinity of Vega for the first time.
Abstract: Vega and Fomalhaut are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred to as debris disk twins. We present Spitzer 10-35 micrometers spectroscopic data centered at both stars and identify warm, unresolved excess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid-infrared and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of approximately 30 micrometers from both warm components is well described as a blackbody emission of approximately 170 K. Interestingly, two other systems, Eri and HR 8799, also show such an unresolved warm dust using the same approach. These warm components may be analogous to the solar system s zodiacal dust cloud, but of far greater mass (fractional luminosity of approximately 10(exp-5) to 10(exp-6) compared to 10(exp-8) to 10(exp-7). The dust temperature and tentative detections in the submillimeter suggest that the warm excess arises from dust associated with a planetesimal ring located near the water-frost line and presumably created by processes occurring at similar locations in other debris systems as well. We also review the properties of the 2 micrometers hot excess around Vega and Fomalhaut, showing that the dust responsible for the hot excess is not spatially associated with the dust we detected in the warm belt.We suggest it may arise from hot nano grains trapped in the magnetic field of the star. Finally, the separation between the warm and cold belt is rather large with an orbital ratio greater than or approximately 10 in all four systems. In light of the current upper limits on the masses of planetary objects and the large gap, we discuss the possible implications for their underlying planetary architecture and suggest that multiple, low-mass planets likely reside between the two belts in Vega and Fomalhaut.

174 citations


Journal ArticleDOI
TL;DR: In this article, a dual-band Herschel/Photodetector Array Camera and Spectrometer imaging for four stars whose spectral energy distributions suggest two-ring disk architectures that mirror that of the asteroid-Kuiper Belt geometry of our own solar system was presented.
Abstract: We present dual-band Herschel/Photodetector Array Camera and Spectrometer imaging for four stars whose spectral energy distributions (SEDs) suggest two-ring disk architectures that mirror that of the asteroid–Kuiper Belt geometry of our own solar system. The Herschel observations at 100 μm spatially resolve the cold/outer-dust component for each star–disk system for the first time, finding evidence of planetesimals at >100 AU, i.e., a larger size than assumed from a simple blackbody fit to the SED. By breaking the degeneracy between the grain properties and the dust’s radial location, the resolved images help constrain the dust grain-size distribution for each system. Three of the observed stars are A-type and one solar-type. On the basis of the combined Spitzer/IRS+MIPS (5–70 μm), the Herschel/PACS (100 and 160 μm) dataset, and under the assumption of idealized spherical grains, we find that the cold/outer belts of the three A-type stars are well fit with a mixed ice/rock composition rather than pure rocky grains, while the debris around the solar-type star is consistent with either rock or ice/rock grains. For the solar-type star HD 104860, we find that the minimum grain size is larger than expected from the threshold set by radiative blowout. The A-type stars HD 71722 and HD 159492, on the other hand, require minimum grain sizes that are smaller than blowout for inner- and outer-ring populations. In the absence of spectral features for ice, we find that the behavior of the continuum can help constrain the composition of the grains (of icy nature and not pure rocky material) given the Herschel-resolved locations of the cold/outer-dust belts.

50 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the FORCAST instrument to image the bipolar planetary nebula M2-9 in six wavelength bands between 6.6 and 37.1 μm.
Abstract: We have imaged the bipolar planetary nebula M2-9 using SOFIA's FORCAST instrument in six wavelength bands between 6.6 and 37.1 μm. A bright central point source, unresolved with SOFIA's ~4''-5'' beam, is seen at each wavelength, and the extended bipolar lobes are clearly seen at 19.7 μm and beyond. The photometry between 10 and 25 μm is well fit by the emission predicted from a stratified disk seen at large inclination, as has been proposed for this source by Lykou et al. and by Smith and Gehrz. The principal new results in this paper relate to the distribution and properties of the dust that emits the infrared radiation. In particular, a considerable fraction of this material is spread uniformly through the lobes, although the dust density does increase at the sharp outer edge seen in higher resolution optical images of M2-9. The dust grain population in the lobes shows that small ( 1 μm) particles appear to be present in roughly equal amounts by mass. We suggest that collisional processing within the bipolar outflow plays an important role in establishing the particle size distribution.

9 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the FORCAST instrument to image the bipolar planetary nebula M2-9 in six wavelength bands between 6.6 and 37.1 µm.
Abstract: We have imaged the bipolar planetary nebula M2-9 using SOFIA's FORCAST instrument in six wavelength bands between 6.6 and 37.1 $\mu m$. A bright central point source, unresolved with SOFIA's $\sim$ 4${''}$-to-5${''}$ beam, is seen at each wavelength, and the extended bipolar lobes are clearly seen at 19.7 $\mu m$ and beyond. The photometry between 10 and 25 $\mu m$ is well fit by the emission predicted from a stratified disk seen at large inclination, as has been proposed for this source by Lykou et al and by Smith and Gehrz. The principal new results in this paper relate to the distribution and properties of the dust that emits the infrared radiation. In particular, a considerable fraction of this material is spread uniformly through the lobes, although the dust density does increase at the sharp outer edge seen in higher resolution optical images of M2-9. The dust grain population in the lobes shows that small ($ $ 1 $\mu m$) particles appear to be present in roughly equal amounts by mass. We suggest that collisional processing within the bipolar outflow plays an important role in establishing the particle size distribution.

7 citations


Journal ArticleDOI
30 Sep 2013
TL;DR: The HAWC+ instrument is under development for flight on SOFIA starting in 2015, which will provide a major advance in capability for polarimetry of the far infrared emission from magnetically aligned interstellar grains as discussed by the authors.
Abstract: Polarimetry of the far infrared emission from magnetically-aligned interstellar grains is one of the best ways of studying the magnetic field at the Galactic Center. We describe the HAWC+ instrument, under development for flight on SOFIA starting in 2015, which will provide a major advance in capability for these critically important measurements.

1 citations