scispace - formally typeset
Search or ask a question

Showing papers in "The Astrophysical Journal in 2013"


Journal ArticleDOI
TL;DR: In this article, a robust method to constrain average galaxy star formation rates, star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass is presented.
Abstract: We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ☉ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

2,085 citations


Journal ArticleDOI
Fiona A. Harrison1, William W. Craig2, William W. Craig3, Finn Erland Christensen4, Charles J. Hailey5, William W. Zhang6, Steven E. Boggs3, Daniel Stern1, W. Rick Cook1, Karl Forster1, Paolo Giommi, Brian W. Grefenstette1, Yunjin Kim1, Takao Kitaguchi7, Jason E. Koglin5, Kristin K. Madsen1, Peter H. Mao1, Hiromasa Miyasaka1, Kaya Mori5, M. Perri8, Michael J. Pivovaroff2, Simonetta Puccetti8, Vikram Rana1, Niels Jørgen Stenfeldt Westergaard4, J. L. Willis1, Andreas Zoglauer3, Hongjun An9, Matteo Bachetti10, Matteo Bachetti11, Nicolas M. Barrière3, Eric C. Bellm1, Varun Bhalerao1, Varun Bhalerao12, Nicolai Brejnholt4, Felix Fuerst1, Carl Christian Liebe1, Craig B. Markwardt6, Melania Nynka5, Julia Vogel2, Dominic J. Walton1, Daniel R. Wik6, David M. Alexander13, L. R. Cominsky14, Ann Hornschemeier6, Allan Hornstrup4, Victoria M. Kaspi9, Greg Madejski, Giorgio Matt15, S. Molendi7, David M. Smith16, John A. Tomsick3, Marco Ajello3, David R. Ballantyne17, Mislav Baloković1, Didier Barret11, Didier Barret10, Franz E. Bauer18, Roger Blandford8, W. Niel Brandt19, Laura Brenneman20, James Chiang8, Deepto Chakrabarty21, Jérôme Chenevez4, Andrea Comastri7, Francois Dufour9, Martin Elvis20, Andrew C. Fabian22, Duncan Farrah23, Chris L. Fryer24, Eric V. Gotthelf5, Jonathan E. Grindlay20, D. J. Helfand25, Roman Krivonos3, David L. Meier1, Jon M. Miller26, Lorenzo Natalucci7, Patrick Ogle1, Eran O. Ofek27, Andrew Ptak6, Stephen P. Reynolds28, Jane R. Rigby6, Gianpiero Tagliaferri7, Stephen E. Thorsett29, Ezequiel Treister30, C. Megan Urry31 
TL;DR: The Nuclear Spectroscopic Telescope Array (NuSTAR) as discussed by the authors is the first focusing high-energy X-ray telescope in orbit, which operates in the band from 3 to 79 keV.
Abstract: The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z ≾ 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element ^(44)Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6° inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

1,966 citations


Journal ArticleDOI
TL;DR: In this article, an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars.
Abstract: Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et?al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et?al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67?AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70?AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200?K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T eff 5000?K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest that conservative estimates of the HZ (water-loss and maximum greenhouse limits) should be used for current RV surveys and Kepler mission to obtain a lower limit on ??, so that future flagship missions like TPF-C and Darwin are not undersized. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.

1,526 citations


Journal ArticleDOI
TL;DR: In this paper, the scaling relations between M? and stellar velocity dispersion (?), V-band luminosity (L), and bulge stellar mass (M bulge), for different galaxy subsamples are presented.
Abstract: New kinematic data and modeling efforts in the past few years have substantially expanded and revised dynamical measurements of black hole masses (M ?) at the centers of nearby galaxies. Here we compile an updated sample of 72 black holes and their host galaxies, and present revised scaling relations between M ? and stellar velocity dispersion (?), V-band luminosity (L), and bulge stellar mass (M bulge), for different galaxy subsamples. Our best-fitting power-law relations for the full galaxy sample are log10(M ?) = 8.32 + 5.64log10(?/200 km s?1), log10(M ?) = 9.23 + 1.11log10(L/1011 L ?), and log10(M ?) = 8.46 + 1.05log10(M bulge/1011 M ?). A log-quadratic fit to the M ?-? relation with an additional term of ?2 [log10(?/200 km s?1)]2 gives ?2 = 1.68 ? 1.82 and does not decrease the intrinsic scatter in M ?. Including 92 additional upper limits on M ? does not change the slope of the M ?-? relation. When the early- and late-type galaxies are fit separately, we obtain similar slopes of 5.20 and 5.06 for the M ?-? relation but significantly different intercepts?M ? in early-type galaxies are about two times higher than in late types at a given sigma. Within early-type galaxies, our fits to M ?(?) give M ? that is about two times higher in galaxies with central core profiles than those with central power-law profiles. Our M ?-L and M ?-M bulge relations for early-type galaxies are similar to those from earlier compilations, and core and power-law galaxies yield similar L- and M bulge-based predictions for M ?. When the conventional quadrature method is used to determine the intrinsic scatter in M ?, our data set shows weak evidence for increased scatter at M bulge < 1011 M ? or LV < 1010.3 L ?, while the scatter stays constant for 1011 < M bulge < 1012.3 M ? and 1010.3 < LV < 1011.5 L ?. A Bayesian analysis indicates that a larger sample of M ? measurements would be needed to detect any statistically significant trend in the scatter with galaxy properties.

1,192 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a new algorithm for detecting dark matter halos, substructure, and tidal features based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension.
Abstract: We present a new algorithm for identifying dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure; as such, it is named Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement). Our method is massively parallel (up to 10 5 CPUs) and runs on the very largest simulations (>10 10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). A previous paper (Knebe et al. 2011) has shown Rockstar to have class-leading recovery of halo properties; we expand on these comparisons with more tests and higher-resolution simulations. We show a significant improvement in substructure recovery as compared to other halo finders and discuss the theoretical and practical limits of simulations in this regard. Finally, we present results which demonstrate conclusively that dark matter halo cores are not at rest relative to the halo bulk or satellite average velocities and have coherent velocity offsets across a wide range of halo masses and redshifts. For massive clusters, these offsets can be up to 400 km s -1 at z = 0 and even higher at high redshifts. Our implementation is publicly available at http://code.google.com/p/rockstar. Subject headings: dark matter — galaxies: abundances — galaxies: evolution — methods: N-body simulations

1,187 citations


Journal ArticleDOI
TL;DR: In this paper, the authors derived a prescription for the signal recovery rate of Kepler that enables a good match to both the KOI size and orbital period distribution, as well as their signal-to-noise distribution.
Abstract: The Kepler mission is uniquely suited to study the frequencies of extrasolar planets. This goal requires knowledge of the incidence of false positives such as eclipsing binaries in the background of the targets, or physically bound to them, which can mimic the photometric signal of a transiting planet. We perform numerical simulations of the Kepler targets and of physical companions or stars in the background to predict the occurrence of astrophysical false positives detectable by the mission. Using real noise level estimates, we compute the number and characteristics of detectable eclipsing pairs involving main-sequence stars and non-main-sequence stars or planets, and we quantify the fraction of those that would pass the Kepler candidate vetting procedure. By comparing their distribution with that of the Kepler Objects of Interest (KOIs) detected during the first six quarters of operation of the spacecraft, we infer the false positive rate of Kepler and study its dependence on spectral type, candidate planet size, and orbital period. We find that the global false positive rate of Kepler is 9.4%, peaking for giant planets (6-22 R ⊕) at 17.7%, reaching a low of 6.7% for small Neptunes (2-4 R ⊕), and increasing again for Earth-size planets (0.8-1.25 R ⊕) to 12.3%. Most importantly, we also quantify and characterize the distribution and rate of occurrence of planets down to Earth size with no prior assumptions on their frequency, by subtracting from the population of actual Kepler candidates our simulated population of astrophysical false positives. We find that 16.5% ± 3.6% of main-sequence FGK stars have at least one planet between 0.8 and 1.25 R ⊕ with orbital periods up to 85 days. This result is a significant step toward the determination of eta-earth, the occurrence of Earth-like planets in the habitable zone of their parent stars. There is no significant dependence of the rates of planet occurrence between 0.8 and 4 Earth radii with spectral type. In the process, we also derive a prescription for the signal recovery rate of Kepler that enables a good match to both the KOI size and orbital period distribution, as well as their signal-to-noise distribution.

1,127 citations


Journal ArticleDOI
TL;DR: In this paper, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in massive, main-sequence star-forming galaxies (SFGs) near the cosmic star formation peak is presented.
Abstract: We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in massive, main-sequence star-forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z ~ 1.2 and 2.2, with log(M *(M ☉)) ≥ 10.4 and log(SFR(M ☉/yr)) ≥ 1.5. Including a correction for the incomplete coverage of the M* -SFR plane, and adopting a "Galactic" value for the CO-H2 conversion factor, we infer average gas fractions of ~0.33 at z ~ 1.2 and ~0.47 at z ~ 2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z ~ 1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular-gas-star-formation relation for the z = 1-3 SFGs is near-linear, with a ~0.7 Gyr gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z ~ 0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M *, gas fractions correlate strongly with the specific star formation rate (sSFR). The variation of sSFR between z ~ 0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.

986 citations


Journal ArticleDOI
TL;DR: In this article, the optical and near-infrared photometry from the Kepler Input Catalog is used to provide improved estimates of the stellar characteristics of the smallest stars in the Kepler target list.
Abstract: We use the optical and near-infrared photometry from the Kepler Input Catalog to provide improved estimates of the stellar characteristics of the smallest stars in the Kepler target list. We find 3897 dwarfs with temperatures below 4000 K, including 64 planet candidate host stars orbited by 95 transiting planet candidates. We refit the transit events in the Kepler light curves for these planet candidates and combine the revised planet/star radius ratios with our improved stellar radii to revise the radii of the planet candidates orbiting the cool target stars. We then compare the number of observed planet candidates to the number of stars around which such planets could have been detected in order to estimate the planet occurrence rate around cool stars. We find that the occurrence rate of 0.5-4 R ⊕ planets with orbital periods shorter than 50 days is planets per star. The occurrence rate of Earth-size (0.5-1.4 R ⊕) planets is constant across the temperature range of our sample at Earth-size planets per star, but the occurrence of 1.4-4 R ⊕ planets decreases significantly at cooler temperatures. Our sample includes two Earth-size planet candidates in the habitable zone, allowing us to estimate that the mean number of Earth-size planets in the habitable zone is planets per cool star. Our 95% confidence lower limit on the occurrence rate of Earth-size planets in the habitable zones of cool stars is 0.04 planets per star. With 95% confidence, the nearest transiting Earth-size planet in the habitable zone of a cool star is within 21 pc. Moreover, the nearest non-transiting planet in the habitable zone is within 5 pc with 95% confidence.

818 citations


Journal ArticleDOI
TL;DR: In this paper, the stellar mass functions (SMFs) of star-forming and quiescent galaxies were measured to z = 4 using a sample of 95,675 K$_s$ -selected galaxies in the COSMOS/UltraVISTA field.
Abstract: We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95,675 K$_s$ -selected galaxies in the COSMOS/UltraVISTA field. The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10%, and 1% of its current value at z ~{} 0.75, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing as {$ρ$}$_{star}$vprop(1 + z)$^{–4.7 ± 0.4}$ since z = 3.5, whereas the mass density of star-forming galaxies increases as {$ρ$}$_{star}$vprop(1 + z)$^{–2.3 ± 0.2}$. At z {gt} 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a non-zero population of quiescent galaxies persists to z = 4. Comparisons of the K$_s$ -selected star-forming galaxy SMFs with UV-selected SMFs at 2.5 {lt} z {lt} 4 show reasonable agreement and suggest that UV-selected samples are representative of the majority of the stellar mass density at z {gt} 3.5. We estimate the average mass growth of individual galaxies by selecting galaxies at fixed cumulative number density. The average galaxy with log(M $_{star}$/M $_{☉}$) = 11.5 at z = 0.3 has grown in mass by only 0.2 dex (0.3 dex) since z = 2.0 (3.5), whereas those with log(M $_{star}$/M $_{☉}$) = 10.5 have grown by {gt}1.0 dex since z = 2. At z {lt} 2, the time derivatives of the mass growth are always larger for lower-mass galaxies, which demonstrates that the mass growth in galaxies since that redshift is mass-dependent and primarily bottom-up. Lastly, we examine potential sources of systematic uncertainties in the SMFs and find that those from photo-z templates, stellar population synthesis modeling, and the definition of quiescent galaxies dominate the total error budget in the SMFs. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium.

804 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an updated and revised analysis of the relationship between the H{beta} broadline region (BLR) radius and the luminosity of the active galactic nucleus (AGN).
Abstract: We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19more » {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.« less

795 citations


Journal ArticleDOI
TL;DR: In this article, the gas regulator is defined by the gas consumption timescale and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR.
Abstract: A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and themore » regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass functions in standard {Lambda}CDM models. The observed relation also boosts the sSFR relative to the specific accretion rate and produces a different dependence on mass, both of which are observed. The derived Z(m{sub star}, SFR) relation for the regulator system is fit to published Z(m{sub star}, SFR) data for the SDSS galaxy population, yielding {epsilon} and {lambda} as functions of m{sub star}. The fitted {epsilon} is consistent with observed molecular gas-depletion timescales in galaxies (allowing for the extra atomic gas), while the fitted {lambda} is also reasonable. The gas-regulator model also successfully reproduces the Z(m{sub star}) metallicities of star-forming galaxies at z {approx} 2. One consequence of this analysis is that it suggests that the m{sub star}-m{sub halo} relation is established by baryonic processes operating within galaxies, and that a significant fraction (40%) of baryons coming into the halos are being processed through the galaxies. This fraction may be more or less constant. The success of the gas-regulator model in simultaneously explaining many diverse observed relations over the 0 < z < 2 interval suggests that the evolution of galaxies is governed by simple physics that form the basis for this model.« less

Journal ArticleDOI
TL;DR: In this paper, spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs) were analyzed and it was shown that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z_* ∝ M_*^(0.30±0.02).
Abstract: We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z_* ∝ M_*^(0.30±0.02). The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M_* = 10^(12) M_☉. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the sudden truncation of star formation due to ram pressure stripping.

Journal ArticleDOI
TL;DR: In this article, the authors consider the thermal contraction of planets close to their parent star, under the influence of evaporation, and find that only low-mass planets with hydrogen envelopes are significantly affected by evapuration, and that most of the mass loss occurs in the first 100 years of stars' lives when they are more chromospherically active.
Abstract: Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ~0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R ⊕. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ~0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M ⊕ and the majority of them should have core masses of a few Earth masses.

Journal ArticleDOI
TL;DR: In this article, the authors describe new implementations of leptonic and hadronic models for the broadband emission from relativistic jets in active galactic nuclei in a temporary steady state.
Abstract: We describe new implementations of leptonic and hadronic models for the broadband emission from relativistic jets in active galactic nuclei in a temporary steady state. For the leptonic model, a temporary equilibrium between particle injection/acceleration, radiative cooling, and escape from a spherical emission region is evaluated, and the self-consistent radiative output is calculated. For the hadronic model, a temporary equilibrium between particle injection/acceleration, radiative and adiabatic cooling, and escape is evaluated for both primary electrons and protons. A new, semianalytical method to evaluate the radiative output from cascades initiated by internal γγ pair production is presented. We use our codes to fit snapshot spectral energy distributions (SEDs) of a representative set of Fermi-LAT-detected blazars. We find that the leptonic model provides acceptable fits to the SEDs of almost all blazars with parameters close to equipartition between the magnetic field and the relativistic electron population. However, the hard γ-ray spectrum of AO 0235+164, in contrast to the very steep IR-optical-UV continuum, poses a severe problem for the leptonic model. If charge neutrality in leptonic models is provided by cold protons, the kinetic energy carried by the jet should be dominated by protons. We find satisfactory representations of the snapshot SEDs of most blazars in our sample with the hadronic model presented here. However, in the case of two quasars the characteristic break at a few GeV energies cannot be well modeled. All of our hadronic model fits require powers in relativistic protons in the range Lp ~ 1047-1049 erg s–1.

Journal ArticleDOI
TL;DR: In this article, the authors presented a substantial extension of the mm wave photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new ''snapshot'' {lambda} = 1.3 mm survey with the Submillimeter Array.
Abstract: We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new ''snapshot'' {lambda} = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L{sub mm}), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3{sigma} depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L{sub mm} and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L{sub mm} and the disk mass, M{sub d} , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of {approx}25 mJy for 1 M{submore » Sun} hosts and a power-law scaling L{sub mm}{proportional_to}M{sub *}{sup 1.5-2.0}. We suggest that a reasonable treatment of dust temperature in the conversion from L{sub mm} to M{sub d} favors an inherently linear M{sub d} {proportional_to}M{sub *} scaling, with a typical disk-to-star mass ratio of {approx}0.2%-0.6%. The measured rms dispersion around this regression curve is {+-}0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of {approx}40 on the inferred M{sub d} (or L{sub mm}) at any given host mass. We argue that this relationship between M{sub d} and M{sub *} likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet population, and provides some basic support for the core accretion model for planet formation. Moreover, we caution that the effects of incompleteness and selection bias must be considered in comparative studies of disk evolution, and illustrate that fact with statistical comparisons of f(L{sub mm}) between the Taurus catalog presented here and incomplete subsamples in the Ophiuchus, IC 348, and Upper Sco young clusters.« less

Journal ArticleDOI
TL;DR: In this paper, the authors measured the evolution of the stellar mass function (SMF) from z = 0−1 using multi-wavelength imaging and spectroscopic redshifts from the PRism MUlti-object Survey (PRIMUS) and the Sloan Digital Sky Survey (SDSS).
Abstract: We measure the evolution of the stellar mass function (SMF) from z = 0−1 using multi-wavelength imaging and spectroscopic redshifts from the PRism MUlti-object Survey (PRIMUS) and the Sloan Digital Sky Survey (SDSS). From PRIMUS we construct an i < 23 flux-limited sample of ∼ 40,000 galaxies at z = 0.2 − 1.0 over five fields totaling ≈ 5.5 deg 2 , and from the SDSS we select ∼ 170,000 galaxies atz = 0.01−0.2 that we analyze consistently with respect to PRIMUS to minimize systematic errors in our evolutionary measurements. We find that the SMF of all galaxies evolves relatively little since z = 1, although we do find evidence for mass assembly downsizing; we measure a ≈ 30% increase in the number density of ∼ 10 10 M⊙ galaxies sincez ≈ 0.6, and a . 10% change in the number density of all & 10 11 M⊙ galaxies since z ≈ 1. Dividing the sample into star-forming and quiescent using an evolving cut in specific star-formation rate, we find that the number density of ∼ 10 10 M⊙ star-forming galaxies stays relatively constant since z ≈ 0.6, whereas the space-density of & 10 11 M⊙ star-forming galaxies decreases by ≈ 50% between z ≈ 1 and z ≈ 0. Meanwhile, the number density of ∼ 10 10 M⊙ quiescent galaxies increases steeply towards low redshift, by a factor of ∼ 2 − 3 since z ≈ 0.6, while the number of massive quiescent galaxies remains approximately constant since z ≈ 1. These results suggest that the rate at which star-forming galaxies are quenched increases with decreasing stellar mass, but that the bulk of the stellar mass buildup within the quiescent population occurs around ∼ 10 10.8 M⊙. In addition, we conclude that mergers do not appear to be a dominant channel for the stellar mass buildup of galaxies at z < 1, even among massive (& 10 11 M⊙) quiescent galaxies. Subject headings: Surveys – galaxies: evolution – galaxies: high-redshift – cosmology: large-scale structure of universe

Journal ArticleDOI
TL;DR: The 2012 UDF12 campaign provided the best constraints to date on the abundance, luminosity distribution, and spectral properties of early star-forming galaxies as discussed by the authors, and the results of the UDF-12 campaign were used to infer redshift-dependent ultraviolet (UV) luminosity densities, reionization histories, and electron scattering optical depth evolution consistent with the available data.
Abstract: Understanding cosmic reionization requires the identification and characterization of early sources of hydrogen-ionizing photons The 2012 Hubble Ultra Deep Field (UDF12) campaign has acquired the deepest infrared images with the Wide Field Camera 3 aboard Hubble Space Telescope and, for the first time, systematically explored the galaxy population deep into the era when cosmic microwave background (CMB) data indicate reionization was underway The UDF12 campaign thus provides the best constraints to date on the abundance, luminosity distribution, and spectral properties of early star-forming galaxies We synthesize the new UDF12 results with the most recent constraints from CMB observations to infer redshift-dependent ultraviolet (UV) luminosity densities, reionization histories, and electron scattering optical depth evolution consistent with the available data Under reasonable assumptions about the escape fraction of hydrogen-ionizing photons and the intergalactic medium clumping factor, we find that to fully reionize the universe by redshift z ~ 6 the population of star-forming galaxies at redshifts z ~ 7-9 likely must extend in luminosity below the UDF12 limits to absolute UV magnitudes of M UV ~ –13 or fainter Moreover, low levels of star formation extending to redshifts z ~ 15-25, as suggested by the normal UV colors of z ≃ 7-8 galaxies and the smooth decline in abundance with redshift observed by UDF12 to z ≃ 10, are additionally likely required to reproduce the optical depth to electron scattering inferred from CMB observations

Journal ArticleDOI
TL;DR: The CHIANTI spectral code as mentioned in this paper consists of two parts: an atomic database and a suite of computer programs in Python and IDL, together, they allow the calculation of the optically thin spectrum of astrophysical objects and provide spectroscopic plasma diagnostics for the analysis of the astrophysical spectra.
Abstract: The CHIANTI spectral code consists of two parts: an atomic database and a suite of computer programs in Python and IDL. Together, they allow the calculation of the optically thin spectrum of astrophysical objects and provide spectroscopic plasma diagnostics for the analysis of astrophysical spectra. The database includes atomic energy levels, wavelengths, radiative transition probabilities, collision excitation rate coefficients, ionization, and recombination rate coefficients, as well as data to calculate free-free, free-bound, and two-photon continuum emission. Version 7.1 has been released, which includes improved data for several ions, recombination rates, and element abundances. In particular, it provides a large expansion of the CHIANTI models for key Fe ions from Fe VIII to Fe XIV to improve the predicted emission in the 50-170 A wavelength range. All data and programs are freely available at http://www.chiantidatabase.org and in SolarSoft, while the Python interface to CHIANTI can be found at http://chiantipy.sourceforge.net.

Journal ArticleDOI
TL;DR: In this paper, a spherically symmetric core-collapse supernova model based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport is proposed.
Abstract: Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabular form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M ☉ progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star.

Journal ArticleDOI
TL;DR: In this article, the authors combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J? Ks ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge.
Abstract: We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J ? Ks ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation AI = 0.7465 ? E(V ? I) + 1.3700 ? E(J ? Ks ), or, equivalently, AI = 1.217 ? E(V ? I)(1 + 1.126 ? (E(J ? Ks )/E(V ? I) ? 0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an RV 2.5 extinction curve with a dispersion , consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be . Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20?kpc. We measure an upper bound on the tilt ? 40? between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at ? 25?. The number of RC stars suggests a total stellar mass for the Galactic bulge of ~2.3 ? 1010 M ? if one assumes a canonical Salpeter initial mass function (IMF), or ~1.6 ? 1010 M ? if one assumes a bottom-light Zoccali?IMF.

Journal ArticleDOI
TL;DR: In this article, ground-based optical and Hubble Space Telescope observations of the shorthard GRB 130603B at z = 0.356 were presented, which demonstrate the presence of excess near-IR emission matching the expected brightness and color of an r-process powered transient (a “kilonova”).
Abstract: We present ground-based optical and Hubble Space Telescopeoptical and near-IR observations of the shorthard GRB 130603B at z = 0.356, which demonstrate the presence of excess near-IR emission matching the expected brightness and color of an r-process powered trans ient (a “kilonova”). The early afterglow fades rapidly with � . -2.6 at t � 8 - 32 hr post-burst and has a spectral index of � � -1.5 (F� / t � � � ), leading to an expected near-IR brightness at the time of the first HST observation of mF160W(t = 9.4 d) & 29.3 AB mag. Instead, the detected source has mF160W = 25.8± 0.2 AB mag, corresponding to a rest-frame absolute magnitude of MJ � -15.2 mag. The upper limit in the HST optical observations is mF606W & 27.7 AB mag (3�), indicating an unusually red color of V - H & 1.9 mag. Comparing the observed near-IR luminosity to theoretical models of kilonovae produced by ejecta from the merger of an NS-NS or NS-BH binary, we infer an ejecta mass of Mej � 0.03 - 0.08 M⊙ for vej � 0.1 - 0.3c. The inferred mass matches the expectations from numerical merger simulations. The presence of a kilonova provides the strongest evidence to date that short GRBs are produced by compact object mergers, and provides initial insight on t he ejected mass and the primary role that compact object merger may play in the r-process. Equally important, it demonstrates that gravitational wave sources detected by Advanced LIGO/Virgo will be accompanied by optical/near-IR counterparts with unusually red colors, detectable by existing and upcoming large wide-fiel d facilities (e.g., Pan-STARRS, DECam, Subaru, LSST).

Journal ArticleDOI
TL;DR: In this paper, the authors presented a large-scale spatial resolution map of the CO-to-H$2}$ conversion factor and dust-togas ratio (DGR) in 26 nearby, star-forming galaxies.
Abstract: We present ~{}kiloparsec spatial resolution maps of the CO-to-H$_{2}$ conversion factor ({$α$}$_{CO}$) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for {$α$}$_{CO}$ and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both {$α$}$_{CO}$ and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, $^{12}$CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our {$α$}$_{CO}$ results on the more typically used $^{12}$CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for {$α$}$_{CO}$ and the DGR. On average, {$α$}$_{CO}$ = 3.1 M $_{☉}$ pc$^{–2}$ (K km s$^{–1}$)$^{–1}$ for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of {$α$}$_{CO}$ as a function of galactocentric radius. However, most galaxies exhibit a lower {$α$}$_{CO}$ value in the central kiloparsec{mdash}a factor of ~{}2 below the galaxy mean, on average. In some cases, the central {$α$}$_{CO}$ value can be factors of 5-10 below the standard Milky Way (MW) value of {$α$}$_{CO, MW}$ = 4.4 M $_{☉}$ pc$^{–2}$ (K km s$^{–1}$)$^{–1}$. While for {$α$}$_{CO}$ we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate {$α$}$_{CO}$ for studies of nearby galaxies.

Journal ArticleDOI
TL;DR: In this article, the authors presented the results of the deepest search to date for star-forming galaxies beyond a redshift z ≃ 8.5 utilizing a new sequence of near-infrared Wide-Field Camera 3 (WFC3/IR) images of the Hubble Ultra Deep Field (UDF).
Abstract: We present the results of the deepest search to date for star-forming galaxies beyond a redshift z ≃ 8.5 utilizing a new sequence of near-infrared Wide-Field Camera 3 (WFC3/IR) images of the Hubble Ultra Deep Field (UDF). This "UDF12" campaign completed in 2012 September doubles the earlier exposures with WFC3/IR in this field and quadruples the exposure in the key F105W filter used to locate such distant galaxies. Combined with additional imaging in the F140W filter, the fidelity of high-redshift candidates is greatly improved. Using spectral energy distribution fitting techniques on objects selected from a deep multi-band near-infrared stack, we find seven promising z > 8.5 candidates. As none of the previously claimed UDF candidates with 8.5 10 galaxies with James Webb Space Telescope.

Journal ArticleDOI
TL;DR: In this article, the authors investigate the dynamical mass ejection, r-process nucleosynthesis, and properties of electromagnetic counterparts of neutron-star (NS) mergers in dependence on the uncertain properties of the nuclear equation of state (EOS) by employing 40 representative, high-density EOSs in relativistic, hydrodynamical simulations.
Abstract: We investigate systematically the dynamical mass ejection, r-process nucleosynthesis, and properties of electromagnetic counterparts of neutron-star (NS) mergers in dependence on the uncertain properties of the nuclear equation of state (EOS) by employing 40 representative, microphysical high-density EOSs in relativistic, hydrodynamical simulations. The crucial parameter determining the ejecta mass is the radius R{sub 1.35} of a 1.35 M{sub Sun} NS. NSs with smaller R{sub 1.35} (''soft'' EOS) eject systematically higher masses. These range from {approx}10{sup -3} M{sub Sun} to {approx}10{sup -2} M{sub Sun} for 1.35-1.35 M{sub Sun} binaries and from {approx}5 Multiplication-Sign 10{sup -3} M{sub Sun} to {approx}2 Multiplication-Sign 10{sup -2} M{sub Sun} for 1.2-1.5 M{sub Sun} systems (with kinetic energies between {approx}5 Multiplication-Sign 10{sup 49} erg and 10{sup 51} erg). Correspondingly, the bolometric peak luminosities of the optical transients of symmetric (asymmetric) mergers vary between 3 Multiplication-Sign 10{sup 41} erg s{sup -1} and 14 Multiplication-Sign 10{sup 41} erg s{sup -1} (9 Multiplication-Sign 10{sup 41} erg s{sup -1} and 14.5 Multiplication-Sign 10{sup 41} erg s{sup -1}) on timescales between {approx}2 hr and {approx}12 hr. If these signals with absolute bolometric magnitudes from -15.0 to -16.7 are measured, the tight correlation of their properties with those of the merging NSs mightmore » provide valuable constraints on the high-density EOS. The r-process nucleosynthesis exhibits a remarkable robustness independent of the EOS, producing a nearly solar abundance pattern above mass number 130. By the r-process content of the Galaxy and the average production per event the Galactic merger rate is limited to 4 Multiplication-Sign 10{sup -5} yr{sup -1} (4 Multiplication-Sign 10{sup -4} yr{sup -1}) for a soft (stiff) NS EOS, if NS mergers are the main source of heavy r-nuclei. The production ratio of radioactive {sup 232}Th to {sup 238}U attains a stable value of 1.64-1.67, which does not exclude NS mergers as potential sources of heavy r-material in the most metal-poor stars.« less

Journal ArticleDOI
TL;DR: In this paper, the authors consider the effect of heavy r-process elements, particularly the lanthanides, which increase the ejecta opacity by several orders of magnitude and include these higher opacities in time-dependent, multi-wavelength radiative transport calculations to predict the broadband light curves of one-dimensional models over a range of parameters (ejecta masses ~10−3-10−1 M ☉ and velocities ~0.1-0.3 c).
Abstract: The coalescence of compact objects is a promising astrophysical source of detectable gravitational wave signals. The ejection of r-process material from such mergers may lead to a radioactively powered electromagnetic counterpart signal which, if discovered, would enhance the science returns. As very little is known about the optical properties of heavy r-process elements, previous light-curve models have adopted opacities similar to those of iron group elements. Here we consider the effect of heavier elements, particularly the lanthanides, which increase the ejecta opacity by several orders of magnitude. We include these higher opacities in time-dependent, multi-wavelength radiative transport calculations to predict the broadband light curves of one-dimensional models over a range of parameters (ejecta masses ~10–3-10–1 M ☉ and velocities ~0.1-0.3 c). We find that the higher opacities lead to much longer duration light curves which can last a week or more. The emission is shifted toward the infrared bands due to strong optical line blanketing, and the colors at later times are representative of a blackbody near the recombination temperature of the lanthanides (T ~ 2500 K). We further consider the case in which a second mass outflow, composed of 56Ni, is ejected from a disk wind, and show that the net result is a distinctive two component spectral energy distribution, with a bright optical peak due to 56Ni and an infrared peak due to r-process ejecta. We briefly consider the prospects for detection and identification of these transients.

Journal ArticleDOI
TL;DR: In this paper, the authors reported WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency.
Abstract: Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of λ/δλ ~ 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 μm. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm2 g−1 account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.

Journal ArticleDOI
TL;DR: In this article, the authors employed the direct method to measure the metallicities of ~200,000 star-forming galaxies from the Sloan Digital Sky Survey that were stacked in bins of stellar mass and star formation rate.
Abstract: The relation between galaxy stellar mass and gas-phase metallicity is a sensitive diagnostic of the main processes that drive galaxy evolution, namely cosmological gas inflow, metal production in stars, and gas outflow via galactic winds. We employed the direct method to measure the metallicities of ~200,000 star-forming galaxies from the Sloan Digital Sky Survey that were stacked in bins of (1) stellar mass and (2) both stellar mass and star formation rate (SFR) to significantly enhance the signal-to-noise ratio of the weak [O III] λ4363 and [O II] λλ7320, 7330 auroral lines required to apply the direct method. These metallicity measurements span three decades in stellar mass from log(M /M ☉) = 7.4-10.5, which allows the direct method mass-metallicity relation to simultaneously capture the high-mass turnover and extend a full decade lower in mass than previous studies that employed more uncertain strong line methods. The direct method mass-metallicity relation rises steeply at low mass (O/H M 1/2) until it turns over at log(M /M ☉) = 8.9 and asymptotes to 12 + log(O/H) = 8.8 at high mass. The direct method mass-metallicity relation has a steeper slope, a lower turnover mass, and a factor of two to three greater dependence on SFR than strong line mass-metallicity relations. Furthermore, the SFR-dependence appears monotonic with stellar mass, unlike strong line mass-metallicity relations. We also measure the N/O abundance ratio, an important tracer of star formation history, and find the clear signature of primary and secondary nitrogen enrichment. N/O correlates tightly with oxygen abundance, and even more so with stellar mass.

Journal ArticleDOI
TL;DR: In this paper, it was shown that the opacity of an expanding r-process material is dominated by bound-bound transitions from those ions with the most complex valence electron structure, namely the lanthanides.
Abstract: Material ejected during (or immediately following) the merger of two neutron stars may assemble into heavy elements through the r-process. The subsequent radioactive decay of the nuclei can power transient electromagnetic emission similar to, but significantly dimmer than, an ordinary supernova. Identifying such events is an important goal of future optical surveys, offering new perspectives on the origin of r-process nuclei and the astrophysical sources of gravitational waves. Predictions of the transient light curves and spectra, however, have suffered from the uncertain optical properties of heavy ions. Here we argue that the opacity of an expanding r-process material is dominated by bound-bound transitions from those ions with the most complex valence electron structure, namely the lanthanides. For a few representative ions, we run atomic structure models to calculate the radiative transition rates for tens of millions of lines. The resulting r-process opacities are orders of magnitude larger than that of ordinary (e.g., iron-rich) supernova ejecta. Radiative transport calculations using these new opacities suggest that the light curves should be longer, dimmer, and redder than previously thought. The spectra appear to be pseudo-blackbody, with broad absorption features, and peak in the infrared (~1 μm). We discuss uncertainties in the opacities and attempt to quantify their impact on the spectral predictions. The results have important implications for observational strategies to find and study the radioactively powered electromagnetic counterparts to neutron star mergers.

Journal ArticleDOI
TL;DR: In this article, the authors present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across time steps.
Abstract: We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across time steps. Our algorithm has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1%-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees. Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/.

Journal ArticleDOI
TL;DR: In this paper, the authors performed radiative transfer simulations of the binary neutron star (NS) merger ejecta including all the r-process elements from Ga to U. They showed that the opacity of the NS merger was about 10 cm2 g−1, which is higher than that of Fe-rich Type Ia supernova ejecta by a factor of ~100.
Abstract: Mergers of binary neutron stars (NSs) are among the most promising gravitational wave (GW) sources. Next generation GW detectors are expected to detect signals from NS mergers within about 200 Mpc. The detection of electromagnetic wave (EM) counterparts is crucial to understanding the nature of GW sources. Among the possible EM emission from the NS merger, emission powered by radioactive r-process nuclei is one of the best targets for follow-up observations. However, predictions so far have not taken into account detailed r-process element abundances in the ejecta. We perform for the first time radiative transfer simulations of the NS merger ejecta including all the r-process elements from Ga to U. We show that the opacity of the NS merger ejecta is about κ = 10 cm2 g–1, which is higher than that of Fe-rich Type Ia supernova ejecta by a factor of ~100. As a result, the emission is fainter and lasts longer than previously expected. The spectra are almost featureless due to the high expansion velocity and bound-bound transitions of many different r-process elements. We demonstrate that the emission is brighter for a higher mass ratio of the two NSs and a softer equation of state adopted in the merger simulations. Because of the red color of the emission, follow-up observations in red optical and near-infrared (NIR) wavelengths will be the most efficient. At 200 Mpc, the expected brightness of the emission is i = 22-25 AB mag, z = 21-23 AB mag, and 21-24 AB mag in the NIR JHK bands. Thus, observations with wide-field 4 m- and 8 m-class optical telescopes and wide-field NIR space telescopes are necessary. We also argue that the emission powered by radioactive energy can be detected in the afterglow of nearby short gamma-ray bursts.