scispace - formally typeset
Search or ask a question

Showing papers by "Michele Armano published in 2009"


Journal ArticleDOI
TL;DR: The LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission as discussed by the authors, and the progress made in preparing its effective implementation in flight.
Abstract: LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission. As a scientific payload, the LISA Technology Package on board LPF will be the most precise geodesics explorer flown as of today, both in terms of displacement and acceleration sensitivity. The challenges embodied by LPF make it a unique mission, paving the way towards the space-borne detection of gravitational waves with LISA. This paper summarizes the basics of LPF, and the progress made in preparing its effective implementation in flight. We hereby give an overview of the experiment philosophy and assumptions to carry on the measurement. We report on the mission plan and hardware design advances and on the progress on detailing measurements and operations. Some light will be shed on the related data processing algorithms. In particular, we show how to single out the acceleration noise from the spacecraft motion perturbations, how to account for dynamical deformation parameters distorting the measurement reference and how to decouple the actuation noise via parabolic free flight.

94 citations


Journal ArticleDOI
TL;DR: In this paper, the requirements, design and implementation of the data analysis environment (LTPDA) that will be used for analysing the data from the LISA Pathfinder mission is presented.
Abstract: The LISA Technology Package (LTP) on board the LISA Pathfinder mission aims to demonstrate some key concepts for LISA which cannot be tested on ground. The mission consists of a series of preplanned experimental runs. The data analysis for each experiment must be designed in advance of the mission. During the mission, the analysis must be carried out promptly so that the results can be fed forward into subsequent experiments. As such a robust and flexible data analysis environment needs to be put in place. Since this software is used during mission operations and effects the mission timeline, it must be very robust and tested to a high degree. This paper presents the requirements, design and implementation of the data analysis environment (LTPDA) that will be used for analysing the data from LTP. The use of the analysis software to perform mock data challenges (MDC) is also discussed, and some highlights from the first MDC are presented.

38 citations


Journal ArticleDOI
TL;DR: In this article, a simplified treatment of the dynamics along the axis joining the two test masses onboard LISA Pathfinder is presented, and the validation of the dynamical model by predicting the spectra of the interferometer output data is shown, a prediction for the data analysis is calculated, and several simulated inter-ferometer data sets are analysed and calibrated to equivalent out-of-loop test mass acceleration.
Abstract: The data analysis of the LISA Technology Package (LTP) will comprise a series of discrete experiments, each focusing on a particular noise measurement or characterization of the instrument in various operating modes. Each of these experiments must be analysed and planned in advance of the mission because the results of a given experiment will have an impact on those that follow. As such, a series of mock data challenges (MDCs) will be developed and carried out with the aim of preparing the analysis tools and optimizing the various planned analyses. The first of these MDCs (MDC1) is a simplified treatment of the dynamics along the axis joining the two test masses onboard LISA Pathfinder. The validation of the dynamical model by predicting the spectra of the interferometer output data is shown, a prediction for the data analysis is calculated and, finally, several simulated interferometer data sets are analysed and calibrated to equivalent out-of-loop test mass acceleration.

8 citations