scispace - formally typeset
Search or ask a question

Showing papers by "Nancy Kleckner published in 2008"


Journal ArticleDOI
Romain Koszul1, Keun Pil Kim1, Mara Prentiss1, Nancy Kleckner1, Sei Kameoka1 
27 Jun 2008-Cell
TL;DR: Diverse findings reveal a process in which, at the pachytene stage, individual telomere/nuclear envelope ensembles attach passively to, and then move in concert with, nucleus-hugging actin cables that are continuous with the global cytoskeletal actin network.

199 citations


Journal ArticleDOI
TL;DR: Pch2 promotes progression of SC-associated CO and NCO recombination complexes at a regulated early–midpachytene transition that is rate-limiting for later events; in contrast, during defective meiosis, Pch2 ensures that aberrant recombination complex fail to progress so that intermediates can be harmlessly repaired during eventual return to growth.
Abstract: We show that, during budding yeast meiosis, axis ensemble Hop1/Red1 and synaptonemal complex (SC) component Zip1 tend to occur in alternating strongly staining domains. The widely conserved AAA+-ATPase Pch2 mediates this pattern, likely by means of direct intervention along axes. Pch2 also coordinately promotes timely progression of cross-over (CO) and noncross-over (NCO) recombination. Oppositely, in a checkpoint-triggering aberrant situation (zip1Δ), Pch2 mediates robust arrest of stalled recombination complexes, likely via nucleolar localization. We suggest that, during WT meiosis, Pch2 promotes progression of SC-associated CO and NCO recombination complexes at a regulated early–midpachytene transition that is rate-limiting for later events; in contrast, during defective meiosis, Pch2 ensures that aberrant recombination complexes fail to progress so that intermediates can be harmlessly repaired during eventual return to growth. Positive vs. negative roles of Pch2 in the two situations are analogous to positive vs. negative roles of Mec1/ATR, suggesting that Pch2 might mediate Mec1/ATR activity. We further propose that regulatory surveillance of normal and abnormal interchromosomal interactions in mitotic and meiotic cells may involve “structure-dependent interchromosomal interaction” (SDIX) checkpoints.

148 citations


Journal ArticleDOI
TL;DR: This study identifies Csm4 as a new molecular participant in these processes and shows that, unlike the two previously identified components, Ndj1 and Mps3, Csm 4 is not required for meiosis-specific telomere/NE association and acts to couple telomeres/NE ensembles to a force generation mechanism.
Abstract: Chromosome movements are a general feature of mid-prophase of meiosis. In budding yeast, meiotic chromosomes exhibit dynamic movements, led by nuclear envelope (NE)-associated telomeres, throughout the zygotene and pachytene stages. Zygotene motion underlies the global tendency for colocalization of NE-associated chromosome ends in a “bouquet.” In this study, we identify Csm4 as a new molecular participant in these processes and show that, unlike the two previously identified components, Ndj1 and Mps3, Csm4 is not required for meiosis-specific telomere/NE association. Instead, it acts to couple telomere/NE ensembles to a force generation mechanism. Mutants lacking Csm4 and/or Ndj1 display the following closely related phenotypes: (i) elevated crossover (CO) frequencies and decreased CO interference without abrogation of normal pathways; (ii) delayed progression of recombination, and recombination-coupled chromosome morphogenesis, with resulting delays in the MI division; and (iii) nondisjunction of homologs at the MI division for some reason other than absence of (the obligatory) CO(s). The recombination effects are discussed in the context of a model where the underlying defect is chromosome movement, the absence of which results in persistence of inappropriate chromosome relationships that, in turn, results in the observed mutant phenotypes.

121 citations


Journal ArticleDOI
TL;DR: Findings reveal that Rec8 localizes to both axis and bulk chromatin and is required for chromatin compactness, and is essential for maintenance of sister cohesion, along arms and centromeres, during the pachytene-to-diplotene transition, revealing an intrinsic tendency for destabilized sister cohesion during this period.
Abstract: During meiosis, DNA events of recombination occur in direct physical association with underlying chromosome axes. Meiotic cohesin Rec8 and cohesin-associated Spo76/Pds5 are prominent axis components. Two observations indicate that recombination complexes can direct the local destabilization of underlying chromosome axes. First, in the absence of Rec8, Spo76/Pds5 is lost locally at sites of late-persisting Msh4 foci, with a concomitant tendency for loosening of intersister and interhomolog connectedness at the affected sites. This loss is dependent on initiation of recombination. Second, in wild-type prophase, local separation of sister axes is seen at sites of synaptonemal complex-associated recombination nodules. Additional findings reveal that Rec8 localizes to both axis and bulk chromatin and is required for chromatin compactness. Further, Rec8 is essential for maintenance of sister cohesion, along arms and centromeres, during the pachytene-to-diplotene transition, revealing an intrinsic tendency for destabilization of sister cohesion during this period. This finding shows how the loss of sister connectedness, in arm and/or centric regions, could lead to the segregation defects that are seen in the human “maternal age effect” and how Rec8 could be a target of that effect. Finally, Rec8 plays related, but synergistic roles with Spo76/Pds5, indicating auxiliary roles for meiotic and mitotic cohesion-associated components.

62 citations


Journal ArticleDOI
01 Jan 2008-Genetics
TL;DR: The factors whose interplay sets the probabilities of chromosomal interactions in this organism are discussed and implications of the inferred organization for ectopic recombination are discussed.
Abstract: The probability with which different regions of a genome come in contact with one another is a question of general interest. The current study addresses this subject for vegetatively growing diploid cells of fission yeast Schizosaccharomyces pombe by application of the Cre/loxP site-specific recombination assay. High levels of allelic interactions imply a tendency for chromosomes to be colocalized along their lengths. Significant homology-dependent pairing at telomere proximal loci and robust nonspecific clustering of centromeres appear to be the primary determinants of this feature. Preference for direct homolog-directed interactions at interstitial chromosomal regions was ambiguous, perhaps as a consequence of chromosome flexibility and the constraints and dynamic nature of the nucleus. Additional features of the data provide evidence for chromosome territories and reveal an intriguing phenomenon in which interaction frequencies are favored for nonhomologous loci that are located at corresponding relative (rather than absolute) positions within their respective chromosome arms. The latter feature, and others, can be understood as manifestations of transient, variable, and/or occasional nonspecific telomeric associations. We discuss the factors whose interplay sets the probabilities of chromosomal interactions in this organism and implications of the inferred organization for ectopic recombination.

29 citations


Journal ArticleDOI
TL;DR: It is demonstrated that Tsr accumulates approximately linearly with time at the cell poles and that, in consequence, more Tsr is present at the old pole of each cell than at its newborn pole.
Abstract: In Escherichia coli, the chemotaxis receptor protein Tsr localizes abundantly to cell poles. The current study, utilizing a Tsr-GFP fusion protein and time-lapse fluorescence microscopy of individual cell lineages, demonstrates that Tsr accumulates approximately linearly with time at the cell poles and that, in consequence, more Tsr is present at the old pole of each cell than at its newborn pole. The rate of pole-localized Tsr accumulation is large enough that old and new poles can always be reliably distinguished, even for cells whose old poles have had only one generation to accumulate signal. Correspondingly, Tsr-GFP can be reliably used to assign new and old poles to any cell without use of information regarding pole heritage, thus providing a useful tool to analyse cells whose prior history is not available. The absolute level of Tsr-GFP at the old pole of a cell also provides a rough estimate of pole (and thus cell) age.

29 citations