scispace - formally typeset
P

Parviz Moin

Researcher at Stanford University

Publications -  495
Citations -  66028

Parviz Moin is an academic researcher from Stanford University. The author has contributed to research in topics: Turbulence & Large eddy simulation. The author has an hindex of 116, co-authored 473 publications receiving 60521 citations. Previous affiliations of Parviz Moin include Center for Turbulence Research & Ames Research Center.

Papers
More filters
Journal ArticleDOI

Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow

TL;DR: In this paper, the conservation properties of the mass, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discrete equations, and finite difference schemes for regular and staggered grid systems are checked for violations of the conservation requirements and a few important discrepancies are pointed out.
Journal ArticleDOI

Numerical Simulation of Turbulent Flows

TL;DR: In this article, the Navier-Stokes equations are used to model the evolution of a turbulent mixing layer and turbulent channel flow in incompressible Newtonian fluids. And the results of simulations of homogeneous turbulence in uniform shear are presented graphically and discussed graphically.
Journal ArticleDOI

A dynamic localization model for large-eddy simulation of turbulent flows

TL;DR: Germano et al. as mentioned in this paper proposed a method for computing coefficients of subgrid-scale eddy viscosity models as a function of space and time, which can be applied to general inhomogeneous flows and does not suffer from the mathematical inconsistencies inherent in the previous formulation.
Journal ArticleDOI

Reynolds-stress and dissipation-rate budgets in a turbulent channel flow

TL;DR: In this article, the Reynolds stresses and the dissipation rate of the turbulence kinetic energy are computed using direct simulation data of a turbulent channel flow using a closed-loop model, where the budget data reveal that all the terms in the budget become important close to the wall.
Journal ArticleDOI

Active turbulence control for drag reduction in wall-bounded flows

TL;DR: In this article, the authors explore concepts for active control of turbulent boundary layers leading to skin-friction reduction using the direct numerical simulation technique and show that significant drag reduction is achieved when the surface boundary condition is modified to suppress the dynamically significant coherent structures present in the wall region.