scispace - formally typeset
Search or ask a question

Showing papers by "Pavle Juranić published in 2018"


Journal ArticleDOI
TL;DR: The photon diagnostics available at the SwissFEL Aramis beamline are described and the working principles of various devices, their function and their expected or measured performance are discussed.
Abstract: The SwissFEL Aramis beamline, covering the photon energies between 1.77 keV and 12.7 keV, features a suite of online photon diagnostics tools to help both users and FEL operators in analysing data and optimizing experimental and beamline performance. Scientists will be able to obtain information about the flux, spectrum, position, pulse length, and arrival time jitter versus the experimental laser for every photon pulse, with further information about beam shape and size available through the use of destructive screens. This manuscript is an overview of the diagnostics tools available at SwissFEL and presents their design, working principles and capabilities. It also features new developments like the first implementation of a THz-streaking based temporal diagnostics for a hard X-ray FEL, capable of measuring pulse lengths to 5 fs r.m.s. or better.

36 citations


Journal ArticleDOI
TL;DR: The experiments presented here demonstrate the feasibility of time-resolved pump-multiprobe X-ray diffraction experiments on protein crystals, and estimations of the applied radiation dose in this experiment were clearly below the values expected to cause damage on the femtosecond time scale.
Abstract: The development of X-ray free-electron lasers (XFELs) has opened the possibility to investigate the ultrafast dynamics of biomacromolecules using X-ray diffraction. Whereas an increasing number of structures solved by means of serial femtosecond crystallography at XFELs is available, the effect of radiation damage on protein crystals during ultrafast exposures has remained an open question. We used a split-and-delay line based on diffractive X-ray optics at the Linac Coherent Light Source XFEL to investigate the time dependence of X-ray radiation damage to lysozyme crystals. For these tests, crystals were delivered to the X-ray beam using a fixed-target approach. The presented experiments provide probe signals at eight different delay times between 19 and 213 femtoseconds after a single pump event, thereby covering the time-scales relevant for femtosecond serial crystallography. Even though significant impact on the crystals was observed at long time scales after exposure with a single X-ray pulse, the collected diffraction data did not show significant signal reduction that could be assigned to beam damage on the crystals in the sampled time window and resolution range. This observation is in agreement with estimations of the applied radiation dose, which in our experiment was clearly below the values expected to cause damage on the femtosecond time scale. The experiments presented here demonstrate the feasibility of time-resolved pump-multiprobe X-ray diffraction experiments on protein crystals.

12 citations


Journal ArticleDOI
TL;DR: A single-shot spectrometer for the tender X-ray range is presented, based on the von Hamos geometry and using elastic scattering as a fingerprint of the XFEL-produced spectrum.
Abstract: One of the remaining challenges for accurate photon diagnostics at X-ray free-electron lasers (FELs) is the shot-to-shot, non-destructive, high-resolution characterization of the FEL pulse spectrum at photon energies between 2 keV and 4 keV, the so-called tender X-ray range. Here, a spectrometer setup is reported, based on the von Hamos geometry and using elastic scattering as a fingerprint of the FEL-generated spectrum. It is capable of pulse-to-pulse measurement of the spectrum with an energy resolution (ΔE/E) of 10−4, within a bandwidth of 2%. The Tender X-ray Single-Shot Spectrometer (TXS) will grant to experimental scientists the freedom to measure the spectrum in a single-shot measurement, keeping the transmitted beam undisturbed. It will enable single-shot reconstructions for easier and faster data analysis.

5 citations


Journal ArticleDOI
TL;DR: The first experimental observation of transverse spatial echoes generated by forward Bragg diffraction of an X-ray beam propagating through a perfect thin crystal is reported.
Abstract: Time-delayed, narrow-band echoes generated by forward Bragg diffraction of an X-ray pulse by a perfect thin crystal are exploited for self-seeding at hard X-ray free-electron lasers. Theoretical predictions indicate that the retardation is strictly correlated to a transverse displacement of the echo pulses. This article reports the first experimental observation of the displaced echoes. The displacements are in good agreement with simulations relying on the dynamical diffraction theory. The echo signals are characteristic for a given Bragg reflection, the structure factor and the probed interplane distance. The reported results pave the way to exploiting the signals as an online diagnostic tool for hard X-ray free-electron laser seeding and for dynamical diffraction investigations of strain at the femtosecond timescale.

4 citations


Posted Content
TL;DR: This first-time observation of a hard x-ray induced ultrafast phase transition in a bismuth single crystal at high intensities indicates a nonthermal origin of a lattice disordering process, and excludes interpretations based on electron-ion equilibration process, or on thermodynamic heating process leading to plasma formation.
Abstract: The evolution of the bismuth crystal structure upon excitation of its A$_{1g}$ phonon has been intensely studied with short pulse optical lasers. Here we present the first-time observation of a hard x-ray induced ultrafast phase transition in a bismuth single crystal, at high intensities (~$10^{14}$ W/cm$^2$). The lattice evolution was followed using a recently demonstrated x-ray single-shot probing setup. The time evolution of the (111) Bragg peak intensity showed strong dependence on the excitation fluence. After exposure to a sufficiently intense x-ray pulse, the peak intensity dropped to zero within 300fs, i.e. faster than one oscillation period of the A1g mode at room temperature. Our analysis indicates a nonthermal origin of a lattice disordering process, and excludes interpretations based on electron-ion equilibration process, or on thermodynamic heating process leading to a plasma formation.

3 citations