scispace - formally typeset
Search or ask a question

Showing papers by "Peter T. Cummings published in 2016"


Journal ArticleDOI
TL;DR: It is found that pyridinic and graphitic nitrogens can increase the total capacitance by increasing quantum capacitance, but pyrrolic configuration limits the total capacitor due to its much lower quantum capacitor than the other two configurations.
Abstract: Recent experiments have shown that nitrogen doping enhances capacitance in carbon electrode supercapacitors. However, a detailed study of the effect of N-doping on capacitance is still lacking. In this paper, we study the doping concentration and the configuration effect on the electric double-layer (EDL) capacitance, quantum capacitance, and total capacitance. It is found that pyridinic and graphitic nitrogens can increase the total capacitance by increasing quantum capacitance, but pyrrolic configuration limits the total capacitance due to its much lower quantum capacitance than the other two configurations. We also find that, unlike the graphitic and pyridinic nitrogens, the pyrrolic configuration's quantum capacitance does not depend on the nitrogen concentration, which may explain why some capacitance versus voltage measurements of N-doped graphene exhibit a V-shaped curve similar to that of undoped graphene. Our investigation provides a deeper understanding of the capacitance enhancement of the N-doping effect in carbon electrodes and suggests a potentially effective way to optimize the capacitance by controlling the type of N-doping.

104 citations


Journal ArticleDOI
TL;DR: It is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip.
Abstract: Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

56 citations


Journal ArticleDOI
TL;DR: The results indicate that steps on the TiO2 (110) surface could be an active site for water Dissociation and the hydrogen released by water dissociation can be transferred among the adsorbates, or gradually diffuses to the bulk water system in the form of hydronium (H3O(+)) at higher water coverage.
Abstract: The associative and dissociative adsorption of water molecules at low-coverage situations on rutile TiO2 (110) surface with step defects was investigated by the density functional theory calculations. Structural optimization of the hydroxylated/hydrated configurations at step edges along the 111 crystal directions and the dynamic process of water dissociation were discussed to get a better description of the water/TiO2 interface. Our results indicate that steps on the TiO2 (110) surface could be an active site for water dissociation. The results of geometry optimization suggest that the stability of hydroxylated configuration is largely dependent on the locations of the H species and the recombination of water molecules from hydroxyls is observed in the fully hydroxylated condition. However, these hydroxyls can be stabilized by the associatively absorbed water nearby by forming competitive intermolecular hydrogen bonds. The dynamics of water dissociation and hydrogen diffusion were studied by the first principles molecular dynamics simulation and our results suggest that the hydrogen released by water dissociation can be transferred among the adsorbates, such as the unsaturated oxygen atoms-H2O-hydroxyl (TiO-H2O-OH) complex at step edges, or gradually diffuses to the bulk water system in the form of hydronium (H3O(+)) at higher water coverage.

43 citations


Journal ArticleDOI
TL;DR: In this article, the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors was investigated.
Abstract: We investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces and enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and ...

42 citations


Book ChapterDOI
01 Jan 2016
TL;DR: A refined version of this software, termed mBuild, is presented, which is a general tool for constructing arbitrarily complex input configurations for molecular simulation in a programmatic fashion, and serves as a stepping stone towards screening and performing optimizations in chemical parameter space of complex materials.
Abstract: In prior work, Sallai, et al. introduced the concept and algorithms of building molecular topologies through the use of a hierarchical data structure and the use of an affine coordinate transformation to connect molecular components. In this work, we expand upon the original concept and present a refined version of this software, termed mBuild , which is a general tool for constructing arbitrarily complex input configurations for molecular simulation in a programmatic fashion. Basic molecular components are connected using an equivalence operator which reduces and often removes the need for users to explicitly rotate and translate components as they assemble systems. Additionally, the programmatic nature of this approach and integration with the scientific Python ecosystem seamlessly exposes high-level variables that users can tune to alter the chemical composition of their systems, such as mixtures of polymers of different chain lengths and surface patterning. Leveraging these features, we demonstrate how mBuild serves as a stepping stone towards screening and performing optimizations in chemical parameter space of complex materials by performing automated screening studies of monolayer systems as a function of graft type, degree of polymerization, and surface density.

39 citations


Journal ArticleDOI
TL;DR: In this article, the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf2N], under applied electric potential in carbon materials with 6.7 and 1.5 nm pores were investigated.
Abstract: Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall is fully reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carb...

25 citations


Journal ArticleDOI
01 Mar 2016-Langmuir
TL;DR: The presence of surface roughness is found to reduce film stability, with localization of wear observed for chain attachment sites nearest the interface of contact, and the influence of substrate nonideality on monolayer degradation is shown to diminish as chain length is increased.
Abstract: Chemisorbed alkylsilane monolayer coatings have been shown to possess favorable lubrication properties; however, film degradation prevents the widespread use of these materials as lubricants in micro- and nanoelectromechanical systems (MEMS/NEMS). In this work, molecular dynamics (MD) simulations are used to provide insight into the conditions that promote the degradation and wear of these materials. This is achieved through removal of interfacial chain-substrate bonds during shear and the examination of the mobility of the resulting free, unbound chains. Specific focus is given to the effects of surface morphology, which has been shown previously to strongly influence frictional forces in monolayer systems. In-plane order of chain attachments is shown to lead to pressure-induced orientational ordering of monolayers, promoting film stability. This behavior is lost as nonideality is introduced into the substrate and chain patterning on the surface becomes disordered. The presence of surface roughness is fo...

15 citations


Journal ArticleDOI
TL;DR: In this article, molecular dynamics simulations were employed to describe the adsorption behavior of the 10 type-III module of fibronectin on nanostructured rutile (110) surfaces.

14 citations


Journal ArticleDOI
TL;DR: The results suggested that the adsorption of the tripeptide on the TiO2 surface through the carboxyl groups in glycine residues can be more stable compared with other binding conformations.
Abstract: The interaction of amino acids with inorganic materials at interfaces plays an important role in enhancing the biocompatibility of titanium-based alloys. The adsorption of a tripeptide, i.e. Pro-Hyp-Gly, on the hydroxylated rutile TiO2(110) surface was investigated by the MD simulations. The changes in free energy during the adsorption of both the tripeptide and calcium ions were calculated by using the PMF method in order to obtain the adsorption strength. The results suggested that the adsorption of the tripeptide on the TiO2 surface through the carboxyl groups in glycine residues can be more stable compared with other binding conformations. Special attention was focused on the cooperative adsorption of the tripeptide with the assistance of calcium ions. Calcium ions preferred to absorb at the tetradentate or monodentate sites on the negatively charged TiO2 surface. As a result of the strong attraction between the carboxyl group and calcium ions, the tripeptide can be pulled down to the surface by following the trajectory of the calcium ions, forming an indirect interaction with a sandwich structure of peptide–cation–TiO2. However, this indirect interaction could eventually transform to the direct adsorption of the tripeptide on the TiO2 surface with higher binding energy. The results may help to interpret the adsorption of peptides on inorganic materials in aqueous solution with ions.

11 citations


Journal ArticleDOI
TL;DR: The approach developed earlier to describe the dimerizing shielded attractive shell (SAS) primitive model of chemical association is generalized and extended to include a description of a polymerizing SAS model based on the combination of the resummed thermodynamic perturbation theory for central force (RTPT-CF) associating potential and self consistent scheme.
Abstract: The approach developed earlier to describe the dimerizing shielded attractive shell (SAS) primitive model of chemical association due to Cummings and Stell is generalized and extended to include a description of a polymerizing SAS model. Our extension is based on the combination of the resummed thermodynamic perturbation theory for central force (RTPT-CF) associating potential and self consistent scheme, which takes into account the changes in the system free volume due to association. Theoretical results for thermodynamical properties of the model at different bonding length, density and temperature are compared against newly generated computer simulation results. The theory gives very accurate predictions for the model with bonding length L (*) from the range 0 < L (*) < 0.6 at all values of the density and temperature studied, including the limit of infinitely large temperature.

10 citations


Posted Content
TL;DR: A simple model of dimerizing hard spheres with highly nontrivial fluid-solid phase behavior is proposed and studied using the recently proposed resummed thermodynamic perturbation theory for central force (RTPT-CF) associating potentials.
Abstract: A simple model of dimerizing hard spheres with highly nontrivial fluid-solid phase behaviour is proposed. The model is studied using the recently proposed resummed thermodynamic perturbation theory for central force (RTPT-CF) associating potentials. The phase diagram has the fluid branch of the fluid-solid coexistence curve located at a temperatures lower than those of the solid branch. This unusual behaviour is related to the strong dependence of the system excluded volume on the temperature, which for the model at hand decreases with increasing temperature. This effect can be also seen for a wide family of fluid models with an effective interaction that combines short range attraction and repulsion at a larger distance. We expect that for sufficiently high repulsive barrier, such systems may show similar phase behaviour.

Journal ArticleDOI
TL;DR: In this paper, the diffusion coefficients of room temperature ionic liquids (RTILs) in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures.
Abstract: Room temperature ionic liquids (RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. To explore the molecular mechanism, RTILs/carbon pieces mixture was investigated by molecular dynamics (MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide ([Bmim][DCA]). This study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presence of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. This work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.