scispace - formally typeset
Search or ask a question

Showing papers by "Prasun Mukherjee published in 2011"


Journal ArticleDOI
TL;DR: This work explores the sensitization of luminescent lanthanide Tb( 3+) and Eu(3+) cations by the electronic structure of zinc sulfide (ZnS) semiconductor nanoparticles by extending the studies from ZnS nanoparticles to other II-VI semiconductor materials.
Abstract: This work explores the sensitization of luminescent lanthanide Tb3+ and Eu3+ cations by electronic structure of zinc sulfide (ZnS) semiconductor nanoparticles. Excitation spectra collected while monitoring the lanthanide emission bands reveal that the ZnS nanoparticles act as an antenna for the sensitization of Tb3+ and Eu3+. The mechanism of lanthanide ion luminescence sensitization is rationalized in terms of an energy and charge transfer between trap sites and is based on a semiempirical model, proposed by Dorenbos and co-workers (Dorenbos, P. J. Phys.: Condens Matter 2003, 15, 8417-8434; J. Lumin. 2004, 108, 301-305; J. Lumin. 2005, 111, 89-104. Dorenbos, P.; van der Kolk, E. Appl. Phys. Lett. 2006, 89, 061122-1-061122-3; Opt. Mater. 2008, 30, 1052-1057. Dorenbos, P. J. Alloys Compd. 2009, 488, 568-573; references 1-6.) to describe the energy level scheme. This model implies that the mechanisms of luminescence sensitization of Tb3+ and Eu3+ in ZnS nanoparticles are different; namely, Tb3+ acts as a hole trap, whereas Eu3+ acts as an electron trap. Further testing of this model is made by extending the studies from ZnS nanoparticles to other II-VI semiconductor materials; namely, CdSe, CdS, and ZnSe.

97 citations


Journal ArticleDOI
TL;DR: A novel tool for deciphering the photophysical sensitization processes operating in [Eu2(Lk)(hfac)6], which suggests that the 1,4-difluorophenyl spacer in L4 is preferable, and a simple interpretation of the complete set of rate constants characterizing the energy migration mechanisms provides straightforward objective criteria for the selection of the most promising building block.
Abstract: This work illustrates a simple approach for optimizing the lanthanide luminescence in molecular dinuclear lanthanide complexes and identifies a particular multidentate europium complex as the best candidate for further incorporation into polymeric materials. The central phenyl ring in the bis-tridentate model ligands L3–L5, which are substituted with neutral (X = H, L3), electron-withdrawing (X = F, L4), or electron-donating (X = OCH3, L5) groups, separates the 2,6-bis(benzimidazol-2-yl)pyridine binding units of linear oligomeric multi-tridentate ligand strands that are designed for the complexation of luminescent trivalent lanthanides, Ln(III). Reactions of L3–L5 with [Ln(hfac)3(diglyme)] (hfac– is the hexafluoroacetylacetonate anion) produce saturated single-stranded dumbbell-shaped complexes [Ln2(Lk)(hfac)6] (k = 3–5), in which the lanthanide ions of the two nine-coordinate neutral [N3Ln(hfac)3] units are separated by 12–14 A. The thermodynamic affinities of [Ln(hfac)3] for the tridentate binding sites in L3–L5 are average (6.6 ≤ log(β(2,1)(Y,Lk)) ≤ 8.4) but still result in 15–30% dissociation at millimolar concentrations in acetonitrile. In addition to the empirical solubility trend found in organic solvents (L4 > L3 >> L5), which suggests that the 1,4-difluorophenyl spacer in L4 is preferable, we have developed a novel tool for deciphering the photophysical sensitization processes operating in [Eu2(Lk)(hfac)6]. A simple interpretation of the complete set of rate constants characterizing the energy migration mechanisms provides straightforward objective criteria for the selection of [Eu2(L4)(hfac)6] as the most promising building block.

75 citations


Journal ArticleDOI
TL;DR: In this article, femtosecond fluorescence upconversion was used to reveal ultrafast solvation and ESIHT of curcumin in both methanol and ethylene glycol.
Abstract: The demonstration of curcumin as a photodynamic therapy agent has generated a high level of interest in understanding the photoinduced chemical and physical properties of this naturally occurring, yellow-orange medicinal compound. Important photophysical processes that may be related to photodynamic therapy effects including excited-state intramolecular hydrogen atom transfer (ESIHT) occur within the femtosecond to picosecond time scales. Femtosecond fluorescence upconversion spectroscopy has sufficient time resolution to resolve and investigate these important photophysical processes. In this review, recent advances in using femtosecond fluorescence upconversion to reveal ultrafast solvation and ESIHT of curcumin are presented. The excited-state photophysics of curcumin has been investigated in alcohols and micellar solutions. The results of curcumin in methanol and ethylene glycol reveal the presence of two decay components in the excited-state kinetics with time scales of 12–20 ps and ∼100 ps. Similarly, in a micellar solution, biphasic kinetics are present with the fast decay component having a time constant of 3–8 ps, the slow decay component 50–80 ps. Deuteration of curcumin in both media leads to a pronounced isotope effect in the slow decay component, which suggests that ESIHT is an important photophysical process on this time scale. The results of multiwavelength fluorescence upconversion studies show that the fast component in the excited-state kinetics is due to ultrafast solvation. These advances form a part of the continuing efforts to elucidate the photodynamic therapy properties of curcumin.

18 citations


Journal ArticleDOI
TL;DR: The IFS(308) technique detects SFCs and/or proteoglycans in fibrous cap atheromas and PIT lesions, and is a step further in developing an invasive clinical tool to detect the vulnerable atherosclerotic plaque.

15 citations


Journal ArticleDOI
TL;DR: In this paper, femtosecond fluorescence upconversion was used to reveal ultrafast solvation and ESIHT of curcumin in both methanol and ethylene glycol.
Abstract: The demonstration of curcumin as a photodynamic therapy agent has generated a high level of interest in understanding the photoinduced chemical and physical properties of this naturally occurring, yellow-orange medicinal compound. Important photophysical processes that may be related to photodynamic therapy effects including excited-state intramolecular hydrogen atom transfer (ESIHT) occur within the femtosecond to picosecond time scales. Femtosecond fluorescence upconversion spectroscopy has sufficient time resolution to resolve and investigate these important photophysical processes. In this review, recent advances in using femtosecond fluorescence upconversion to reveal ultrafast solvation and ESIHT of curcumin are presented. The excited-state photophysics of curcumin has been investigated in alcohols and micellar solutions. The results of curcumin in methanol and ethylene glycol reveal the presence of two decay components in the excited-state kinetics with time scales of 12–20 ps and ∼100 ps. Similarly, in a micellar solution, biphasic kinetics are present with the fast decay component having a time constant of 3–8 ps, the slow decay component 50–80 ps. Deuteration of curcumin in both media leads to a pronounced isotope effect in the slow decay component, which suggests that ESIHT is an important photophysical process on this time scale. The results of multiwavelength fluorescence upconversion studies show that the fast component in the excited-state kinetics is due to ultrafast solvation. These advances form a part of the continuing efforts to elucidate the photodynamic therapy properties of curcumin.

5 citations