scispace - formally typeset
Search or ask a question

Showing papers by "Robert H. Bartlett published in 2019"


Journal ArticleDOI
TL;DR: A complete nomenclature for ECLS cannulation configurations accommodating future revisions was developed to facilitate ability to compare practices and results, to promote efficient communication, and to improve quality of registry data.
Abstract: The Extracorporeal Life Support Organization (ELSO) Maastricht Treaty for Nomenclature in Extracorporeal Life Support (ECLS) established consensus nomenclature and abbreviations for ECLS to ensure accurate, concise communication. We build on this consensus nomenclature by layering a framework of precise and efficient abbreviations for cannula configuration that describe flow direction, number of cannulae used, any additional ECLS-related catheters, and cannulation sites. This work is a consensus of international representatives of the ELSO, including those from the North American, Latin American, European, South and West Asian, and Asian-Pacific chapters of ELSO. The classification increases in descriptive capability by introducing a third (cannula tip position) and fourth (cannula dimension) level to those provided in the previous consensus on ECLS cannulation configuration nomenclature. This expansion offers the simplest level needed to convey cannulation information yet allows for more details when required. A complete nomenclature for ECLS cannulation configurations accommodating future revisions was developed to facilitate ability to compare practices and results, to promote efficient communication, and to improve quality of registry data.

60 citations



Journal ArticleDOI
TL;DR: The AP is protective against lung injury and promotes lung development compared with mechanical ventilation in premature lambs and could protect premature lungs from injury and promote continued development.
Abstract: An artificial placenta (AP) utilizing extracorporeal life support (ECLS) could protect premature lungs from injury and promote continued development. Preterm lambs at estimated gestational age (EGA) 114-128 days (term = 145) were delivered by Caesarian section and managed in one of three groups: AP, mechanical ventilation (MV), or tissue control (TC). Artificial placenta lambs (114 days EGA, n = 3; 121 days, n = 5) underwent venovenous (VV)-ECLS with jugular drainage and umbilical vein reinfusion for 7 days, with a fluid-filled, occluded airway. Mechanical ventilation lambs (121 days, n = 5; 128 days, n = 5) underwent conventional MV until failure or maximum 48 hours. Tissue control lambs (114 days, n = 3; 121 days, n = 5; 128 days, n = 5) were sacrificed at delivery. At the conclusion of each experiment, lungs were procured and sectioned. Hematoxylin and eosin (HE lung development was quantified by the area fraction of double-positive tips of secondary alveolar septa. Support duration of AP lambs was 163 ± 9 (mean ± SD) hours, 4 ± 3 for early MV lambs, and 40 ± 6 for late MV lambs. Total injury scores at 121 days were 1.7 ± 2.1 for AP vs. 5.5 ± 1.6 for MV (p = 0.02). Using immunofluorescence, double-positive tip area fraction at 121 days was 0.017 ± 0.011 in AP lungs compared with 0.003 ± 0.003 in MV lungs (p < 0.001) and 0.009 ± 0.005 in TC lungs. At 128 days, double-positive tip area fraction was 0.012 ± 0.007 in AP lungs compared with 0.004 ± 0.004 in MV lungs (p < 0.001) and 0.016 ± 0.009 in TC lungs. The AP is protective against lung injury and promotes lung development compared with mechanical ventilation in premature lambs.

17 citations


Journal ArticleDOI
TL;DR: This study is the first to document the ex-situ hind limb perfusion platform on a rodent model and has potential to guide future research to extend the viable duration of VCA preservation.
Abstract: Ex-situ perfusion (ESP) is a promising method in preserving vascularized composite tissue allografts (VCAs) with potential to widen donor procurement to larger geographic areas. To optimize the method of preservation, we developed a small animal model to conduct biomolecular investigations. Twenty rat hind limbs (18.2 ± 1.3 g) were procured and connected to our custom-made ESP system. Perfusion pressure and flow parameters were measured with hourly blood gas analysis under near-normothermic (30-35˚C) conditions. Perfusate was prepared with swine hemoglobin (6-9 g/dL) and STEEN Solution. After 6 hours of perfusion, gastrocnemius muscles were evaluated for their histology and metabolomic profiling. Following 3 sets of experiments, perfusion was maintained at an average flow of 0.9 ± 0.24 mL/min and resulted in lactate levels of 3.78 ± 1.02 mmol/L. Metabolomic analysis revealed maintained cellular energy stores (total adenylates perfusion 0.698 ± 0.052 versus baseline 0.685 ± 0.091 umols/ug, p = 0.831), and histologic analysis revealed no evidence of barotrauma or myodegeneration. Rat hind limbs were viable after 6 hours of ESP on our miniaturized ESP system. This study is the first to document the ex-situ hind limb perfusion platform on a rodent model. These experimental findings have potential to guide future research to extend the viable duration of VCA preservation.

12 citations


Journal ArticleDOI
01 Dec 2019-Talanta
TL;DR: The SNAP-impregnated PO2 sensors were found to more accurately measure PO2 levels in blood continuously with significantly reduced thrombus formation (as compared to controls) and analytical in vivo PO2 sensing performance.

11 citations


Journal ArticleDOI
TL;DR: During artificial placenta (AP) support, spleens appear to develop normally and exhibit an appropriate inflammatory response and after initiation of AP support, EMH transitions away from the spleen.

11 citations


Journal ArticleDOI
TL;DR: Hypothermic ex-situ perfusion using HTK protects viability of the limb but fails to restore muscle force in the long-term.
Abstract: BACKGROUND Hypothermic ex situ perfusion (HESP) systems are used to prolong allograft survival in solid organ transplantations and have been shown to be superior to static cold storage (SCS) methods. However, the effect of this preservation method on limb allograft survival and long-term function has not yet been tested. In this study, we investigated the long-term effects of the HESP on skeletal muscle metabolism, structure, and force generation and compared it with the current standard of preservation. METHODS Forty male Lewis rats (250 ± 25 g) were divided into 5 groups, including naive control, sciatic nerve transection or repair, immediate transplantation, SCS, and HESP. For the SCS group, limbs were preserved at 4°C for 6 hours. In the HESP group, limbs were continuously perfused with oxygenated histidine-tryptophan-ketoglutarate (HTK) solution at 10-15°C for 6 hours. Hemodynamic and biochemical parameters of perfusion were recorded throughout the experiment. At 12 weeks, electromyography and muscle force measurements (maximum twitch and tetanic forces) were obtained along with muscle samples for histology and metabolomics analysis. RESULTS Histology demonstrated 48% myocyte injury in the HESP group compared with 49% in immediate transplantation (P = 0.96) and 74% in the SCS groups (P < 0.05). The maximum twitch force measurement revealed a significantly higher force in the HESP group compared with the SCS group (P = 0.029). Essential amino acid levels of the gastrocnemius muscle did not reach significance, with the exception of higher proline levels in the HESP group. CONCLUSIONS HESP using HTK protects viability of the limb but fails to restore muscle force in the long term.

4 citations


Journal ArticleDOI
01 Apr 2019
TL;DR: In the warm ischemia and static warm storage groups, glycolytic pathway metabolites decreased, but the Krebs cycle metabolite of succinate and the purine degradation product of hypoxanthine accumulated.
Abstract: Objective The aim of this study was to evaluate the impact of static cold storage preservation on skeletal muscle metabolism using a rodent model. Methods Sixteen male Lewis rats (250 ± 25 g) were distributed into 4 groups, including naive control, warm ischemia for 2 hours, static warm storage for 6 hours, and static cold storage for 6 hours. Energy status, metabolomics profiling, and histopathology of the muscle were analyzed. Results In the warm ischemia and static warm storage groups, glycolytic pathway metabolites decreased, but the Krebs cycle metabolite of succinate and the purine degradation product of hypoxanthine accumulated. Increased succinate and hypoxanthine levels were associated with increased injury severity scores. During static cold storage, the glycolytic pathway activity and the energy status were preserved. Succinate and hypoxanthine levels showed no significant difference from the naive group. Conclusion Warm ischemia results in reduced glycolysis and Krebs cycle metabolites. Static cold storage preserves the glycolytic pathway and represents a favorable contribution to cellular energy demand. Succinate and hypoxanthine might be used as novel potential biomarkers for the assessment of viability and injury severity.

2 citations


Patent
18 Jun 2019
TL;DR: In this article, an artificial lung system for a patient having a membrane lung system having an gas inlet and a blood inlet, a blood outlet, and an exhaust was presented.
Abstract: An artificial lung system for a patient having a membrane lung system having an gas inlet, a blood inlet, a blood outlet, and an exhaust; a gas system operably coupled to the gas inlet of the membrane lung system; a gas phase CO2 sensor disposed downstream of the exhaust of the membrane lung system and monitoring an exhaust gas CO2 (EGCO2) level and/or an blood oxygen saturation sensor disposed upstream of the blood inlet of the membrane lung system and monitoring a blood oxygen saturation level; and a feedback controller receiving the CO2 signal and/or blood oxygen saturation signal and outputting a control signal to control gas flow and/or blood flow.