Author
S. M. Riazul Islam
Other affiliations: University of Dhaka, Inha University, University of Santiago de Compostela
Bio: S. M. Riazul Islam is an academic researcher from Sejong University. The author has contributed to research in topic(s): Communication channel & Noma. The author has an hindex of 24, co-authored 125 publication(s) receiving 5501 citation(s). Previous affiliations of S. M. Riazul Islam include University of Dhaka & Inha University.
Papers
More filters
TL;DR: An intelligent collaborative security model to minimize security risk is proposed; how different innovations such as big data, ambient intelligence, and wearables can be leveraged in a health care context is discussed; and various IoT and eHealth policies and regulations are addressed to determine how they can facilitate economies and societies in terms of sustainable development.
Abstract: The Internet of Things (IoT) makes smart objects the ultimate building blocks in the development of cyber-physical smart pervasive frameworks. The IoT has a variety of application domains, including health care. The IoT revolution is redesigning modern health care with promising technological, economic, and social prospects. This paper surveys advances in IoT-based health care technologies and reviews the state-of-the-art network architectures/platforms, applications, and industrial trends in IoT-based health care solutions. In addition, this paper analyzes distinct IoT security and privacy features, including security requirements, threat models, and attack taxonomies from the health care perspective. Further, this paper proposes an intelligent collaborative security model to minimize security risk; discusses how different innovations such as big data, ambient intelligence, and wearables can be leveraged in a health care context; addresses various IoT and eHealth policies and regulations across the world to determine how they can facilitate economies and societies in terms of sustainable development; and provides some avenues for future research on IoT-based health care based on a set of open issues and challenges.
1,690 citations
TL;DR: This paper comprehensively surveys the recent progress of NOMA in 5G systems, reviewing the state-of-the-art capacity analysis, power allocation strategies, user fairness, and user-pairing schemes in NomA.
Abstract: Non-orthogonal multiple access (NOMA) is one of the promising radio access techniques for performance enhancement in next-generation cellular communications. Compared to orthogonal frequency division multiple access, which is a well-known high-capacity orthogonal multiple access technique, NOMA offers a set of desirable benefits, including greater spectrum efficiency. There are different types of NOMA techniques, including power-domain and code-domain. This paper primarily focuses on power-domain NOMA that utilizes superposition coding at the transmitter and successive interference cancellation at the receiver. Various researchers have demonstrated that NOMA can be used effectively to meet both network-level and user-experienced data rate requirements of fifth-generation (5G) technologies. From that perspective, this paper comprehensively surveys the recent progress of NOMA in 5G systems, reviewing the state-of-the-art capacity analysis, power allocation strategies, user fairness, and user-pairing schemes in NOMA. In addition, this paper discusses how NOMA performs when it is integrated with various proven wireless communications techniques, such as cooperative communications, multiple-input multiple-output, beamforming, space-time coding, and network coding among others. Furthermore, this paper discusses several important issues on NOMA implementation and provides some avenues for future research.
921 citations
TL;DR: In this paper, the authors comprehensively survey the recent progress of NOMA in 5G systems, reviewing the state-of-the-art capacity analysis, power allocation strategies, user fairness, and user-pairing schemes in NOMAs.
Abstract: Non-orthogonal multiple access (NOMA) is one of the promising radio access techniques for performance enhancement in next-generation cellular communications. Compared to orthogonal frequency division multiple access (OFDMA), which is a well-known high-capacity orthogonal multiple access (OMA) technique, NOMA offers a set of desirable benefits, including greater spectrum efficiency. There are different types of NOMA techniques, including power-domain and code-domain. This paper primarily focuses on power-domain NOMA that utilizes superposition coding (SC) at the transmitter and successive interference cancellation (SIC) at the receiver. Various researchers have demonstrated that NOMA can be used effectively to meet both network-level and user-experienced data rate requirements of fifth-generation (5G) technologies. From that perspective, this paper comprehensively surveys the recent progress of NOMA in 5G systems, reviewing the state-of-the-art capacity analysis, power allocation strategies, user fairness, and user-pairing schemes in NOMA. In addition, this paper discusses how NOMA performs when it is integrated with various proven wireless communications techniques, such as cooperative communications, multiple input multiple output (MIMO), beamforming, space time coding, and network coding, among others. Furthermore, this paper discusses several important issues on NOMA implementation and provides some avenues for future research.
879 citations
TL;DR: In this paper, the authors proposed a divide-and-next-largest-difference-based user pairing algorithm to distribute the capacity gain among the NOMA clusters in a controlled manner.
Abstract: This article presents advances in resource allocation for downlink non-orthogonal multiple access (NOMA) systems, focusing on user pairing and power allocation algorithms. The former pairs the users to obtain high capacity gain by exploiting the channel gain difference between the users, while the latter allocates power to users in each cluster to balance system throughput and user fairness. Additionally, the article introduces the concept of cluster fairness and proposes the divide-and-next-largest-difference-based user pairing algorithm to distribute the capacity gain among the NOMA clusters in a controlled manner. Furthermore, performance comparison between multiple-input multiple-output NOMA (MIMO-NOMA) and MIMO orthogonal multiple access (MIMO-OMA) is conducted when users have pre-defined quality of service. Simulation results are presented, which validate the advantages of NOMA over OMA. Finally, the article provides avenues for further research on resource allocation for downlink NOMA.
235 citations
TL;DR: The WBAN requirements that are important for the design of a low-power MAC protocol are outlined and useful suggestions are given to help the MAC designers to develop aLow Access Control protocol that will satisfy the stringent requirements.
Abstract: The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires the low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements, including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for a WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for a WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent requirements.
121 citations
Cited by
More filters
Journal Article•
8,675 citations
1,778 citations
TL;DR: The current state-of-art of WBANs is surveyed based on the latest standards and publications, and open issues and challenges within each area are explored as a source of inspiration towards future developments inWBANs.
Abstract: Recent developments and technological advancements in wireless communication, MicroElectroMechanical Systems (MEMS) technology and integrated circuits has enabled low-power, intelligent, miniaturized, invasive/non-invasive micro and nano-technology sensor nodes strategically placed in or around the human body to be used in various applications, such as personal health monitoring. This exciting new area of research is called Wireless Body Area Networks (WBANs) and leverages the emerging IEEE 802.15.6 and IEEE 802.15.4j standards, specifically standardized for medical WBANs. The aim of WBANs is to simplify and improve speed, accuracy, and reliability of communication of sensors/actuators within, on, and in the immediate proximity of a human body. The vast scope of challenges associated with WBANs has led to numerous publications. In this paper, we survey the current state-of-art of WBANs based on the latest standards and publications. Open issues and challenges within each area are also explored as a source of inspiration towards future developments in WBANs.
1,159 citations
TL;DR: This third edition of what has now become a well-established textbook in cardiovascular medicine is again edited by Dr Eugene Braunwald with the assistance of 65 other authors who read like a Who's Who of American Cardiology.
Abstract: This third edition of what has now become a well-established textbook in cardiovascular medicine is again edited by Dr Eugene Braunwald with the assistance of 65 other authors who read like a Who's Who of American Cardiology. Since the second edition, 12 new chapters have been added or substituted and others have been significantly revised. The first volume includes Part I on "Examination of the Patient" and Part II on "Normal and Abnormal Circulatory Function." The second volume deals with specific diseases. Part III, "Diseases of the Heart, Pericardium and Vascular System," includes new sections on "Risk Factors for Coronary Artery Disease," "The Pathogenesis of Atherosclerosis," and "Interventional Catheterization Techniques." Part IV, "Broader Perspectives on Heart Disease and Cardiologic Practice," includes new chapters on "Genetics and Cardiovascular Disease," "Aging in Cardiac Disease," and "Cost Effective Strategies in Cardiology." The last 200 pages of the book (Part V) are devoted to
900 citations
TL;DR: The fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed and many useful solutions are discussed for each layer.
Abstract: Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted.
736 citations