scispace - formally typeset
S

Stephen R. Forrest

Researcher at University of Michigan

Publications -  1066
Citations -  117591

Stephen R. Forrest is an academic researcher from University of Michigan. The author has contributed to research in topics: OLED & Thin film. The author has an hindex of 148, co-authored 1041 publications receiving 111816 citations. Previous affiliations of Stephen R. Forrest include Bell Labs & Office of Technology Transfer.

Papers
More filters
Journal ArticleDOI

Highly efficient phosphorescent emission from organic electroluminescent devices

TL;DR: In this article, a host material doped with the phosphorescent dye PtOEP (PtOEP II) was used to achieve high energy transfer from both singlet and triplet states.
Journal ArticleDOI

The path to ubiquitous and low-cost organic electronic appliances on plastic

TL;DR: The future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
Journal ArticleDOI

Very high-efficiency green organic light-emitting devices based on electrophosphorescence

TL;DR: In this paper, the performance of an organic light-emitting device employing the green electrophosphorescent material, fac tris(2-phenylpyridine) iridium [Ir(ppy)3] doped into a 4,4′-N,N′-dicarbazole-biphenyl host was described.
Journal ArticleDOI

Nearly 100% internal phosphorescence efficiency in an organic light emitting device

TL;DR: In this paper, the authors demonstrate very high efficiency electrophosphorescence in organic light-emitting devices employing a phosphorescent molecule doped into a wide energy gap host, achieving a maximum external quantum efficiency of 19.0±1.0 and luminous power efficiency of 60±5 lm/W.
Journal ArticleDOI

Small molecular weight organic thin-film photodetectors and solar cells

TL;DR: In this paper, the double heterojunction was proposed to confine excitons within the active layers, allowing substantially higher internal efficiencies to be achieved, and a full optical and electrical analysis of the double-heterostructure architecture leads to optimal cell design as a function of the optical properties and exciton diffusion lengths of the photoactive materials.