scispace - formally typeset
Search or ask a question

Showing papers by "Sussan Nourshargh published in 2017"


Journal ArticleDOI
TL;DR: A rapid search in PubMed shows that using "flow cytometry immunology" as a search term yields more than 68 000 articles, the first of which is not about lymphocytes as mentioned in this paper.
Abstract: The marriage between immunology and cytometry is one of the most stable and productive in the recent history of science. A rapid search in PubMed shows that, as of July 2017, using “flow cytometry immunology” as a search term yields more than 68 000 articles, the first of which, interestingly, is not about lymphocytes. It might be stated that, after a short engagement, the exchange of the wedding rings between immunology and cytometry officially occurred when the idea to link fluorochromes to monoclonal antibodies came about. After this, recognizing different types of cells became relatively easy and feasible not only by using a simple fluorescence microscope, but also by a complex and sometimes esoteric instrument, the flow cytometer that is able to count hundreds of cells in a single second, and can provide repetitive results in a tireless manner. Given this, the possibility to analyse immune phenotypes in a variety of clinical conditions has changed the use of the flow cytometer, which was incidentally invented in the late 1960s to measure cellular DNA by using intercalating dyes, such as ethidium bromide. The epidemics of HIV/AIDS in the 1980s then gave a dramatic impulse to the technology of counting specific cells, since it became clear that the quantification of the number of peripheral blood CD4+ T cells was crucial to follow the course of the infection, and eventually for monitoring the therapy. As a consequence, the development of flow cytometers that had to be easy-to-use in all clinical laboratories helped to widely disseminate this technology. Nowadays, it is rare to find an immunological paper or read a conference abstract in which the authors did not use flow cytometry as the main tool to dissect the immune system and identify its fine and complex functions. Of note, recent developments have created the sophisticated technology of mass cytometry, which is able to simultaneously identify dozens of molecules at the single cell level and allows us to better understand the complexity and beauty of the immune system.

454 citations


Journal ArticleDOI
TL;DR: It is proposed that leukocyte nuclei must disassemble the thin endothelial actin filaments interlaced between endothelial stress fibers in order to complete TEM.

79 citations


Journal ArticleDOI
TL;DR: The hyperacute postinjury time window contained a focused, specific signature of the response to critical injury that led to widespread genomic activation, and showed enrichment among diseases and biological functions associated with cell survival and organismal death rather than inflammatory pathways.
Abstract: CPC, DW, and MRB were funded by the National Institute for Health Research (NIHR) as part of the portfolio of translational research of the NIHR Biomedical Research Unit at Barts and The London School of Medicine and Dentistry. This project was enabled through access to the MRC eMedLab Medical Bioinformatics infrastructure, supported by the Medical Research Council [grant number MR/L016311/1]. JM was funded in part by the NIHR [academic clinical fellowship]. JMS is funded by the Wellcome Trust and Department of Health [grant numbers 101012/Z/13/Z and HICFR7405]. HDT was funded by grants from Barts and The London Charity and the Royal College of Surgeons of England. MBP is funded by an MRC-DTP PhD fellowship in Translational Immunology [grant number 1797139]. The Centre for Trauma Sciences received funding from Barts Charity [grant number 753/1722]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

72 citations


Journal ArticleDOI
TL;DR: Interestingly, using mice deficient in both TNF receptors p55 and p75, chimeric animals and anti-TNFα antibody blockade, it is demonstrated that tissue-release of TNFα governs both neutrophil migration through the lymphatic endothelium and luminal crawling.
Abstract: Neutrophils are recognised to play a pivotal role at the interface between innate and acquired immunities following their recruitment to inflamed tissues and lymphoid organs. While neutrophil trafficking through blood vessels has been extensively studied, the molecular mechanisms regulating their migration into the lymphatic system are still poorly understood. Here, we have analysed neutrophil-lymphatic vessel interactions in real time and in vivo using intravital confocal microscopy applied to inflamed cremaster muscles. We show that antigen sensitisation of the tissues induces a rapid but transient entry of tissue-infiltrated neutrophils into lymphatic vessels and subsequent crawling along the luminal side of the lymphatic endothelium. Interestingly, using mice deficient in both TNF receptors p55 and p75, chimeric animals and anti-TNFα antibody blockade we demonstrate that tissue-release of TNFα governs both neutrophil migration through the lymphatic endothelium and luminal crawling. Mechanistically, we show that TNFα primes directly the neutrophils to enter the lymphatic vessels in a strictly CCR7-dependent manner; and induces ICAM-1 up-regulation on lymphatic vessels, allowing neutrophils to crawl along the lumen of the lymphatic endothelium in an ICAM-1/MAC-1-dependent manner. Collectively, our findings demonstrate a new role for TNFα as a key regulator of neutrophil trafficking into and within lymphatic system in vivo.

45 citations


Journal ArticleDOI
TL;DR: Novel biology for both exogenous and endogenous Gal-3 in promoting leukocyte recruitment to the inflamed microcirculation during acute inflammation is unveiled.
Abstract: In vivo and ex vivo imaging were used to investigate the function of galectin-3 (Gal-3) during the process of leukocyte recruitment to the inflamed microcirculation. The cremasteric microcirculation of wild-type (C57BL/6), Gal-3-/-, and CX3CR1gfp/+ mice were assessed by intravital microscopy after PBS, IL-1β, TNF-α, or recombinant Gal-3 treatment. These cellular responses were investigated further using flow-chamber assays, confocal microscopy, flow cytometry, PCR analysis, and proteome array. We show that mechanisms mediating leukocyte slow rolling and emigration are impaired in Gal-3-/- mice, which could be because of impaired expression of cell adhesion molecules and an altered cell surface glycoproteome. Local (intrascrotal) administration of recombinant Gal-3 to wild-type mice resulted in a dose-dependent reduction in rolling velocity associated with increased numbers of adherent and emigrated leukocytes, ∼50% of which were Ly6G+ neutrophils. Intrascrotal administration of Gal-3 to CX3CR1gfp/+ mice confirmed that approximately equal numbers of monocytes are also recruited in response to this lectin. Exogenous Gal-3 treatment was accompanied by increased proinflammatory cytokines and chemokines within the local tissue. In conclusion, this study unveils novel biology for both exogenous and endogenous Gal-3 in promoting leukocyte recruitment during acute inflammation.

43 citations