scispace - formally typeset
Search or ask a question

Showing papers by "Vincent Meininger published in 2022"


Journal ArticleDOI
TL;DR: It is hypothesized that muscle vesicles may be involved in ALS pathology, because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle‐secretory tissue.
Abstract: The cause of the motor neuron (MN) death that drives terminal pathology in amyotrophic lateral sclerosis (ALS) remains unknown, and it is thought that the cellular environment of the MN may play a key role in MN survival. Several lines of evidence implicate vesicles in ALS, including that extracellular vesicles may carry toxic elements from astrocytes towards MNs, and that pathological proteins have been identified in circulating extracellular vesicles of sporadic ALS patients. Because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle‐secretory tissue, we hypothesized that muscle vesicles may be involved in ALS pathology.

11 citations


Journal ArticleDOI
TL;DR: The results demonstrate that the M114T PFN1 mutation is more deleterious than the E117G variant in patient cells and experimental models and suggest a role for the RAB9-dependent autophagic pathway in ALS.
Abstract: Mutations in profilin 1 (PFN1) have been identified in rare familial cases of Amyotrophic Lateral Sclerosis (ALS). PFN1 is involved in multiple pathways that could intervene in ALS pathology. However, the specific pathogenic role of PFN1 mutations in ALS is still not fully understood. We hypothesized that PFN1 could play a role in regulating autophagy pathways and that PFN1 mutations could disrupt this function. We used patient cells (lymphoblasts) or tissue (post-mortem) carrying PFN1 mutations (M114T and E117G), and designed experimental models expressing wild-type or mutant PFN1 (cell lines and novel PFN1 mice established by lentiviral transgenesis) to study the effects of PFN1 mutations on autophagic pathway markers. We observed no accumulation of PFN1 in the spinal cord of one E117G mutation carrier. Moreover, in patient lymphoblasts and transfected cell lines, the M114T mutant PFN1 protein was unstable and deregulated the RAB9-mediated alternative autophagy pathway involved in the clearance of damaged mitochondria. In vivo, motor neurons expressing M114T mutant PFN1 showed mitochondrial abnormalities. Our results demonstrate that the M114T PFN1 mutation is more deleterious than the E117G variant in patient cells and experimental models and suggest a role for the RAB9-dependent autophagic pathway in ALS.

4 citations



Journal ArticleDOI
TL;DR: The prototypic phenotype of patients with ALS associated with PFN1 mutations in Profilin 1 (PFN1) is characterized and a review of the current ALS classifications is reviewed, taking into consideration both phenotype and genotype.
Abstract: The objective of this study was to characterize the prototypical phenotype of patients with amyotrophic lateral sclerosis (ALS) associated with PFN1 mutations in profilin 1 (PFN1) and to determine clinical indications to test for mutations in this gene.