scispace - formally typeset
Search or ask a question
Institution

ASTRON

OtherDwingeloo, Netherlands
About: ASTRON is a other organization based out in Dwingeloo, Netherlands. It is known for research contribution in the topics: Galaxy & LOFAR. The organization has 3610 authors who have published 5615 publications receiving 208923 citations. The organization is also known as: Nederlands instituut voor radioastronomie & astron.nl/.
Topics: Galaxy, LOFAR, Radio telescope, Pulsar, Radio galaxy


Papers
More filters
Journal ArticleDOI
28 Oct 2010-Nature
TL;DR: Radio timing observations of the binary millisecond pulsar J1614-2230 that show a strong Shapiro delay signature are presented and the pulsar mass is calculated to be (1.97 ± 0.04)M⊙, which rules out almost all currently proposed hyperon or boson condensate equations of state.
Abstract: Neutron stars comprise the densest form of matter known to exist in our Universe, but their composition and properties are uncertain. Measurements of their masses and radii can constrain theoretical predictions of their composition, but so far it has not been possible to rule out many predictions of 'exotic' non-nucleonic components. Here, radio timing observations of the binary millisecond pulsar J1614-2230 are presented, allowing almost all currently proposed hyperon or boson condensate equations of state to be ruled out.

3,338 citations

Journal ArticleDOI
26 Apr 2013-Science
TL;DR: Pulsar J0348+0432 is only the second neutron star with a precisely determined mass of 2 M☉
Abstract: Many physically motivated extensions to general relativity (GR) predict significant deviations at energies present in massive neutron stars. We report the measurement of a 2.01 \(\pm \) 0.04 solar mass (M\(_\odot \)) pulsar in a 2.46-h orbit around a 0.172 \(\pm \) 0.003 M\(_\odot \) white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detection experiments. Additionally, the system strengthens recent constraints on the properties of dense matter and provides novel insight to binary stellar astrophysics and pulsar recycling.

3,224 citations

Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +403 moreInstitutions (82)
TL;DR: In this article, the Event Horizon Telescope was used to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87.
Abstract: When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 +/- 3 mu as, which is circular and encompasses a central depression in brightness with a flux ratio greater than or similar to 10: 1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 +/- 0.7) x 10(9) M-circle dot. Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.

2,589 citations

Journal ArticleDOI
M. P. van Haarlem1, Michael W. Wise2, Michael W. Wise1, A. W. Gunst1  +219 moreInstitutions (27)
TL;DR: In dit artikel zullen the authors LOFAR beschrijven: van de astronomische mogelijkheden met de nieuwe telescoop tot aan een nadere technische beshrijving of het instrument.
Abstract: LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10-240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR's new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.

2,067 citations

Journal ArticleDOI
TL;DR: Stagewise Orthogonal Matching Pursuit (StOMP) successively transforms the signal into a negligible residual, and numerical examples showing that StOMP rapidly and reliably finds sparse solutions in compressed sensing, decoding of error-correcting codes, and overcomplete representation are given.
Abstract: Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NP-hard in general. We show here that for systems with “typical”/“random” Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our proposal, Stagewise Orthogonal Matching Pursuit (StOMP), successively transforms the signal into a negligible residual. Starting with initial residual r0 = y, at the s -th stage it forms the “matched filter” ΦTrs-1, identifies all coordinates with amplitudes exceeding a specially chosen threshold, solves a least-squares problem using the selected coordinates, and subtracts the least-squares fit, producing a new residual. After a fixed number of stages (e.g., 10), it stops. In contrast to Orthogonal Matching Pursuit (OMP), many coefficients can enter the model at each stage in StOMP while only one enters per stage in OMP; and StOMP takes a fixed number of stages (e.g., 10), while OMP can take many (e.g., n). We give both theoretical and empirical support for the large-system effectiveness of StOMP. We give numerical examples showing that StOMP rapidly and reliably finds sparse solutions in compressed sensing, decoding of error-correcting codes, and overcomplete representation.

1,416 citations


Authors

Showing all 3615 results

NameH-indexPapersCitations
G. de Zotti154718121249
Fabio Finelli147542111128
J. González-Nuevo144500108318
Matt J. Jarvis144106485559
S. Galeotta140377101132
Jean-Paul Kneib13880589287
Joss Bland-Hawthorn136111477593
A. Gregorio12938190799
Roberto Maiolino12781661724
M. Frailis12629494164
Andre K. Geim125445206833
Eva K. Grebel11886383915
Alan Watson11884667437
Yoshinori Tokura11785870258
Luciana Bianchi11559662245
Network Information
Related Institutions (5)
National Radio Astronomy Observatory
8.1K papers, 431.1K citations

91% related

INAF
30.8K papers, 1.2M citations

90% related

European Southern Observatory
16.1K papers, 823K citations

90% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

88% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202215
2021204
2020266
2019281
2018327