scispace - formally typeset
Search or ask a question

Showing papers in "The Astrophysical Journal in 2019"


Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +403 moreInstitutions (82)
TL;DR: In this article, the Event Horizon Telescope was used to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87.
Abstract: When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 +/- 3 mu as, which is circular and encompasses a central depression in brightness with a flux ratio greater than or similar to 10: 1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 +/- 0.7) x 10(9) M-circle dot. Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.

2,589 citations


Journal ArticleDOI
TL;DR: In this paper, an improved determination of the Hubble constant (H0) from HST observations of 70 long-period Cepheids in the Large Magellanic Cloud was presented.
Abstract: We present an improved determination of the Hubble constant (H0) from Hubble Space Telescope (HST) observations of 70 long-period Cepheids in the Large Magellanic Cloud. These were obtained with the same WFC3 photometric system used to measure Cepheids in the hosts of Type Ia supernovae. Gyroscopic control of HST was employed to reduce overheads while collecting a large sample of widely-separated Cepheids. The Cepheid Period-Luminosity relation provides a zeropoint-free link with 0.4% precision between the new 1.2% geometric distance to the LMC from Detached Eclipsing Binaries (DEBs) measured by Pietrzynski et al (2019) and the luminosity of SNe Ia. Measurements and analysis of the LMC Cepheids were completed prior to knowledge of the new LMC distance. Combined with a refined calibration of the count-rate linearity of WFC3-IR with 0.1% precision (Riess et al 2019), these three improved elements together reduce the full uncertainty in the LMC geometric calibration of the Cepheid distance ladder from 2.5% to 1.3%. Using only the LMC DEBs to calibrate the ladder we find H0=74.22 +/- 1.82 km/s/Mpc including systematic uncertainties, 3% higher than before for this particular anchor. Combining the LMC DEBs, masers in NGC 4258 and Milky Way parallaxes yields our best estimate: H0 = 74.03 +/- 1.42 km/s/Mpc, including systematics, an uncertainty of 1.91%---15% lower than our best previous result. Removing any one of these anchors changes H0 by < 0.7%. The difference between H0 measured locally and the value inferred from Planck CMB+LCDM is 6.6+/-1.5 km/s/Mpc or 4.4 sigma (P=99.999% for Gaussian errors) in significance, raising the discrepancy beyond a plausible level of chance. We summarize independent tests which show this discrepancy is not readily attributable to an error in any one source or measurement, increasing the odds that it results from a cosmological feature beyond LambdaCDM.

1,924 citations


Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +251 moreInstitutions (56)
TL;DR: In this article, the authors present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign, and find that >50% of the total flux at arcsecond scales comes from near the horizon and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole.
Abstract: We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 ± 3 μas and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc2 = 3.8 ± 0.4 μas. Folding in a distance measurement of ${16.8}_{-0.7}^{+0.8}\,\mathrm{Mpc}$ gives a black hole mass of $M=6.5\pm 0.2{| }_{\mathrm{stat}}\pm 0.7{| }_{\mathrm{sys}}\times {10}^{9}\hspace{2pt}{M}_{\odot }$. This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity.

1,024 citations


Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +251 moreInstitutions (58)
TL;DR: In this article, the first Event Horizon Telescope (EHT) images of M87 were presented, using observations from April 2017 at 1.3 mm wavelength, showing a prominent ring with a diameter of ~40 μas, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole.
Abstract: We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of ~40 μas, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions.

952 citations


Journal ArticleDOI
Željko Ivezić1, Steven M. Kahn2, J. Anthony Tyson3, Bob Abel4  +332 moreInstitutions (55)
TL;DR: The Large Synoptic Survey Telescope (LSST) as discussed by the authors is a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile.
Abstract: We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320–1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r ~ 27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.

921 citations


Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +259 moreInstitutions (62)
TL;DR: In this article, a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by GRS was constructed and compared with the observed visibilities.
Abstract: The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz.

808 citations


Journal ArticleDOI
TL;DR: In this paper, the mass and radius of the isolated 205.53 Hz millisecond pulsar PSR J0030+0451 were estimated using a Bayesian inference approach to analyze its energy-dependent thermal X-ray waveform, which was observed using the Neutron Star Interior Composition Explorer (NICER).
Abstract: Neutron stars are not only of astrophysical interest, but are also of great interest to nuclear physicists because their attributes can be used to determine the properties of the dense matter in their cores. One of the most informative approaches for determining the equation of state (EoS) of this dense matter is to measure both a star’s equatorial circumferential radius R e and its gravitational mass M. Here we report estimates of the mass and radius of the isolated 205.53 Hz millisecond pulsar PSR J0030+0451 obtained using a Bayesian inference approach to analyze its energy-dependent thermal X-ray waveform, which was observed using the Neutron Star Interior Composition Explorer (NICER). This approach is thought to be less subject to systematic errors than other approaches for estimating neutron star radii. We explored a variety of emission patterns on the stellar surface. Our best-fit model has three oval, uniform-temperature emitting spots and provides an excellent description of the pulse waveform observed using NICER. The radius and mass estimates given by this model are km and (68%). The independent analysis reported in the companion paper by Riley et al. explores different emitting spot models, but finds spot shapes and locations and estimates of R e and M that are consistent with those found in this work. We show that our measurements of R e and M for PSR J0030+0451 improve the astrophysical constraints on the EoS of cold, catalyzed matter above nuclear saturation density.

758 citations


Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +394 moreInstitutions (78)
TL;DR: The Event Horizon Telescope (EHT) as mentioned in this paper is a very long baseline interferometry (VLBI) array that comprises millimeter and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth.
Abstract: The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ~1.3 mm, EHT angular resolution (λ/D) is ~25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of the EHT, detail the technology and instrumentation that enable observations, and provide measures of its performance. Meeting the EHT science objectives has required several key developments that have facilitated the robust extension of the VLBI technique to EHT observing wavelengths and the production of instrumentation that can be deployed on a heterogeneous array of existing telescopes and facilities. To meet sensitivity requirements, high-bandwidth digital systems were developed that process data at rates of 64 gigabit s^(−1), exceeding those of currently operating cm-wavelength VLBI arrays by more than an order of magnitude. Associated improvements include the development of phasing systems at array facilities, new receiver installation at several sites, and the deployment of hydrogen maser frequency standards to ensure coherent data capture across the array. These efforts led to the coordination and execution of the first Global EHT observations in 2017 April, and to event-horizon-scale imaging of the supermassive black hole candidate in M87.

756 citations


Journal ArticleDOI
TL;DR: In this paper, the mass and equatorial radius of the millisecond pulsar PSR J0030+0451 were estimated based on a relativistic ray-tracing of thermal emission from hot regions of the pulsar surface.
Abstract: We report on Bayesian parameter estimation of the mass and equatorial radius of the millisecond pulsar PSR J0030+0451, conditional on pulse-profile modeling of Neutron Star Interior Composition Explorer X-ray spectral-timing event data. We perform relativistic ray-tracing of thermal emission from hot regions of the pulsar’s surface. We assume two distinct hot regions based on two clear pulsed components in the phase-folded pulse-profile data; we explore a number of forms (morphologies and topologies) for each hot region, inferring their parameters in addition to the stellar mass and radius. For the family of models considered, the evidence (prior predictive probability of the data) strongly favors a model that permits both hot regions to be located in the same rotational hemisphere. Models wherein both hot regions are assumed to be simply connected circular single-temperature spots, in particular those where the spots are assumed to be reflection-symmetric with respect to the stellar origin, are strongly disfavored. For the inferred configuration, one hot region subtends an angular extent of only a few degrees (in spherical coordinates with origin at the stellar center) and we are insensitive to other structural details; the second hot region is far more azimuthally extended in the form of a narrow arc, thus requiring a larger number of parameters to describe. The inferred mass M and equatorial radius R eq are, respectively, and , while the compactness is more tightly constrained; the credible interval bounds reported here are approximately the 16% and 84% quantiles in marginal posterior mass.

737 citations


Journal ArticleDOI
TL;DR: A new three-dimensional map of dust reddening, based on Gaia parallaxes and stellar photometry from Pan-STARRS 1 and 2MASS, is presented, which infer the distances, reddenings and types of 799 million stars.
Abstract: We present a new three-dimensional map of dust reddening, based on Gaia parallaxes and stellar photometry from Pan-STARRS 1 and 2MASS. This map covers the sky north of a declination of -30 degrees, out to a distance of several kiloparsecs. This new map contains three major improvements over our previous work. First, the inclusion of Gaia parallaxes dramatically improves distance estimates to nearby stars. Second, we incorporate a spatial prior that correlates the dust density across nearby sightlines. This produces a smoother map, with more isotropic clouds and smaller distance uncertainties, particularly to clouds within the nearest kiloparsec. Third, we infer the dust density with a distance resolution that is four times finer than in our previous work, to accommodate the improvements in signal-to-noise enabled by the other improvements. As part of this work, we infer the distances, reddenings and types of 799 million stars. We obtain typical reddening uncertainties that are ~30% smaller than those reported in the Gaia DR2 catalog, reflecting the greater number of photometric passbands that enter into our analysis. Our 3D dust map can be accessed at this https URL or through the Python package "dustmaps," and can be queried interactively at this http URL. Our catalog of stellar parameters can be accessed at this https URL.

648 citations


Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +243 moreInstitutions (60)
TL;DR: In this paper, the Event Horizon Telescope (EHT) 1.3 mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5-11 observing campaign are presented.
Abstract: We present the calibration and reduction of Event Horizon Telescope (EHT) 1.3 mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5–11 observing campaign. These global very long baseline interferometric observations include for the first time the highly sensitive Atacama Large Millimeter/submillimeter Array (ALMA); reaching an angular resolution of 25 μas, with characteristic sensitivity limits of ~1 mJy on baselines to ALMA and ~10 mJy on other baselines. The observations present challenges for existing data processing tools, arising from the rapid atmospheric phase fluctuations, wide recording bandwidth, and highly heterogeneous array. In response, we developed three independent pipelines for phase calibration and fringe detection, each tailored to the specific needs of the EHT. The final data products include calibrated total intensity amplitude and phase information. They are validated through a series of quality assurance tests that show consistency across pipelines and set limits on baseline systematic errors of 2% in amplitude and 1° in phase. The M87 data reveal the presence of two nulls in correlated flux density at ~3.4 and ~8.3 Gλ and temporal evolution in closure quantities, indicating intrinsic variability of compact structure on a timescale of days, or several light-crossing times for a few billion solar-mass black hole. These measurements provide the first opportunity to image horizon-scale structure in M87.

Journal ArticleDOI
TL;DR: In this article, a new and independent determination of the local value of the Hubble constant based on a calibration of the Tip of the Red Giant Branch (TRGB) applied to Type Ia supernovae (SNeIa) is presented.
Abstract: We present a new and independent determination of the local value of the Hubble constant based on a calibration of the Tip of the Red Giant Branch (TRGB) applied to Type Ia supernovae (SNeIa). We find a value of Ho = 69.8 +/- 0.8 (+/-1.1\% stat) +/- 1.7 (+/-2.4\% sys) km/sec/Mpc. The TRGB method is both precise and accurate, and is parallel to, but independent of the Cepheid distance scale. Our value sits midway in the range defined by the current Hubble tension. It agrees at the 1.2-sigma level with that of the Planck 2018 estimate, and at the 1.7-sigma level with the SHoES measurement of Ho based on the Cepheid distance scale. The TRGB distances have been measured using deep Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging of galaxy halos. The zero point of the TRGB calibration is set with a distance modulus to the Large Magellanic Cloud of 18.477 +/- 0.004 (stat) +/-0.020 (sys) mag, based on measurement of 20 late-type detached eclipsing binary (DEB) stars, combined with an HST parallax calibration of a 3.6 micron Cepheid Leavitt law based on Spitzer observations. We anchor the TRGB distances to galaxies that extend our measurement into the Hubble flow using the recently completed Carnegie Supernova Project I sample containing about 100 well-observed SNeIa. There are several advantages of halo TRGB distance measurements relative to Cepheid variables: these include low halo reddening, minimal effects of crowding or blending of the photometry, only a shallow (calibrated) sensitivity to metallicity in the I-band, and no need for multiple epochs of observations or concerns of different slopes with period. In addition, the host masses of our TRGB host-galaxy sample are higher on average than the Cepheid sample, better matching the range of host-galaxy masses in the CSP distant sample, and reducing potential systematic effects in the SNeIa measurements.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1215 moreInstitutions (134)
TL;DR: In this paper, the mass, spin, and redshift distributions of binary black hole (BBH) mergers with LIGO and Advanced Virgo observations were analyzed using phenomenological population models.
Abstract: We present results on the mass, spin, and redshift distributions with phenomenological population models using the 10 binary black hole (BBH) mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constrain properties of the BBH mass spectrum using models with a range of parameterizations of the BBH mass and spin distributions. We find that the mass distribution of the more massive BH in such binaries is well approximated by models with no more than 1% of BHs more massive than 45 M and a power-law index of (90% credibility). We also show that BBHs are unlikely to be composed of BHs with large spins aligned to the orbital angular momentum. Modeling the evolution of the BBH merger rate with redshift, we show that it is flat or increasing with redshift with 93% probability. Marginalizing over uncertainties in the BBH population, we find robust estimates of the BBH merger rate density of R= (90% credibility). As the BBH catalog grows in future observing runs, we expect that uncertainties in the population model parameters will shrink, potentially providing insights into the formation of BHs via supernovae, binary interactions of massive stars, stellar cluster dynamics, and the formation history of BHs across cosmic time.


Journal ArticleDOI
TL;DR: In this paper, a group of 61,111 red clump (RC) stars were selected as tracers by stellar parameters from APOGEE survey and the color excess ratio (CER) and the relative extinction were derived from spectroscopic, astrometric, and photometric data.
Abstract: A precise interstellar dust extinction law is critically important to interpret observations. There are two indicators of extinction: the color excess ratio (CER) and the relative extinction. Compared to the CER, the wavelength-dependent relative extinction is more challenging to be determined. In this work, we combine spectroscopic, astrometric, and photometric data to derive high-precision CERs and relative extinction from optical to mid-infrared (IR) bands. A group of 61,111 red clump (RC) stars are selected as tracers by stellar parameters from APOGEE survey. The multiband photometric data are collected from Gaia, APASS, SDSS, Pan-STARRS1, 2MASS, and WISE surveys. For the first time, we calibrate the curvature of CERs in determining CERs E(lambda-GRP)/E(GBP-GRP) from color excess--color excess diagrams. Through elaborate uncertainty analysis, we conclude that the precision of our CERs is significantly improved (sigma < 0.015). With parallaxes from Gaia DR2, we calculate the relative extinction A_GBP/A_GRP for 5051 RC stars. By combining the CERs with the A_GBP/A_GRP, the optical--mid-IR extinction A_lambda/A_GRP has been determined in a total of 21 bands. Given no bias toward any specific environment, our extinction law represents the average extinction law with the total-to-selective extinction ratio Rv=3.16+-0.15. Our observed extinction law supports an adjustment in parameters of the CCM Rv=3.1 curve, together with the near-IR power-law index alpha=2.07+-0.03. The relative extinction values of HST and JWST near-IR bandpasses are predicted in 2.5% precision. As the observed reddening/extinction tracks are curved, the curvature correction needs to be considered when applying extinction correction.


Journal ArticleDOI
TL;DR: In this article, the Jeans equation was used to derive the circular velocity curve of the Milky Way with the highest precision to date across Galactocentric distances of $5\leq R \leq 25$ kpc.
Abstract: We measure the circular velocity curve $v_{\rm c}(R)$ of the Milky Way with the highest precision to date across Galactocentric distances of $5\leq R \leq 25$ kpc. Our analysis draws on the $6$-dimensional phase-space coordinates of $\gtrsim 23,000$ luminous red-giant stars, for which we previously determined precise parallaxes using a data-driven model that combines spectral data from APOGEE with photometric information from WISE, 2MASS, and Gaia. We derive the circular velocity curve with the Jeans equation assuming an axisymmetric gravitational potential. At the location of the Sun we determine the circular velocity with its formal uncertainty to be $v_{\rm c}(R_{\odot}) = (229.0\pm0.2)\rm\,km\,s^{-1}$ with systematic uncertainties at the $\sim 2-5\%$ level. We find that the velocity curve is gently but significantly declining at $(-1.7\pm0.1)\rm\,km\,s^{-1}\,kpc^{-1}$, with a systematic uncertainty of $0.46\rm\,km\,s^{-1}\,kpc^{-1}$, beyond the inner $5$ kpc. We exclude the inner $5$ kpc from our analysis due to the presence of the Galactic bar, which strongly influences the kinematic structure and requires modeling in a non-axisymmetric potential. Combining our results with external measurements of the mass distribution for the baryonic components of the Milky Way from other studies, we estimate the Galaxy's dark halo mass within the virial radius to be $M_{\rm vir} = (7.25\pm0.26)\cdot 10^{11}M_{\odot}$ and a local dark matter density of $\rho_{\rm dm}(R_{\odot}) = 0.30\pm0.03\,\rm GeV\,cm^{-3}$.

Journal ArticleDOI
TL;DR: In this paper, a wide-frequency-range (1-8 GHz) sample of high signal-to-noise, coherently dedispersed bursts detected using the Arecibo and Green Bank telescopes was analyzed.
Abstract: FRB 121102 is the only known repeating fast radio burst source. Here we analyze a wide-frequency-range (1–8 GHz) sample of high signal-to-noise, coherently dedispersed bursts detected using the Arecibo and Green Bank telescopes. These bursts reveal complex time–frequency structures that include subbursts with finite bandwidths. The frequency-dependent burst structure complicates the determination of a dispersion measure (DM); we argue that it is appropriate to use a DM metric that maximizes frequency-averaged pulse structure, as opposed to peak signal-to-noise, and find DM = 560.57 ± 0.07 pc cm−3 at MJD 57,644. After correcting for dispersive delay, we find that the subbursts have characteristic frequencies that typically drift lower at later times in the total burst envelope. In the 1.1–1.7 GHz band, the ~0.5–1 ms subbursts have typical bandwidths ranging from 100 to 400 MHz, and a characteristic drift rate of ~200 MHz ms−1 toward lower frequencies. At higher radio frequencies, the subburst bandwidths and drift rate are larger, on average. While these features could be intrinsic to the burst emission mechanism, they could also be imparted by propagation effects in the medium local to the source. Comparison of the burst DMs with previous values in the literature suggests an increase of ΔDM ~ 1–3 pc cm−3 in 4 yr; though, this could be a stochastic variation as opposed to a secular trend. This implies changes in the local medium or an additional source of frequency-dependent delay. Overall, the results are consistent with previously proposed scenarios in which FRB 121102 is embedded in a dense nebula.

Journal ArticleDOI
TL;DR: In this paper, the authors used a variety of cosmic microwave background (CMB) datasets to constrain $Lambda$CDM parameters, and found the model-based sound horizon to be larger than the empirically-determined one with a statistical significance of between 2 and 3$Sigma, depending on the dataset.
Abstract: Type Ia Supernovae, calibrated by classical distance ladder methods, can be used, in conjunction with galaxy survey two-point correlation functions, to empirically determine the size of the sound horizon $r_{\\rm s}$. Assumption of the $\\Lambda$CDM model, together with data to constrain its parameters, can also be used to determine the size of the sound horizon. Using a variety of cosmic microwave background (CMB) datasets to constrain $\\Lambda$CDM parameters, we find the model-based sound horizon to be larger than the empirically-determined one with a statistical significance of between 2 and 3$\\sigma$, depending on the dataset. If reconciliation requires a change to the cosmological model, we argue that change is likely to be important in the two decades of scale factor evolution prior to recombination. Future CMB observations will therefore likely be able to test any such adjustments; e.g., a third generation CMB survey like SPT-3G can achieve a three-fold improvement in the constraints on $r_{\\rm s}$ in the $\\Lambda$CDM model extended to allow additional light degrees of freedom.

Journal ArticleDOI
TL;DR: In this paper, a uniform catalog of accurate distances to local molecular clouds informed by the Gaia DR2 data release is presented, where the authors infer the distance and extinction to stars along sightlines towards the clouds using optical and near-infrared photometry.
Abstract: We present a uniform catalog of accurate distances to local molecular clouds informed by the Gaia DR2 data release. Our methodology builds on that of Schlafly et al. (2014). First, we infer the distance and extinction to stars along sightlines towards the clouds using optical and near-infrared photometry. When available, we incorporate knowledge of the stellar distances obtained from Gaia DR2 parallax measurements. We model these per-star distance-extinction estimates as being caused by a dust screen with a 2-D morphology derived from Planck at an unknown distance, which we then fit for using a nested sampling algorithm. We provide updated distances to the Schlafly et al. (2014) sightlines towards the Dame et al. (2001) and Magnani et al. (1985) clouds, finding good agreement with the earlier work. For a subset of 27 clouds, we construct interactive pixelated distance maps to further study detailed cloud structure, and find several clouds which display clear distance gradients and/or are comprised of multiple components. We use these maps to determine robust average distances to these clouds. The characteristic combined uncertainty on our distances is approximately 5-6%, though this can be higher for clouds at farther distances, due to the limitations of our single-cloud model.

Journal ArticleDOI
TL;DR: In this paper, the authors present an independent confirmation of the zero-point offset of data Release 2 (DR2) parallaxes using asteroseismic data of evolved stars in the Kepler field.
Abstract: We present an independent confirmation of the zero-point offset of ${\\rm \\it Gaia}$ Data Release 2 (DR2) parallaxes using asteroseismic data of evolved stars in the ${\\rm \\it Kepler}$ field. Using well-characterized red giant branch (RGB) stars from the APOKASC-2 catalogue we identify a ${\\rm \\it Gaia}$ astrometric pseudo-color ($\ u_{\\rm eff}$)- and ${\\rm \\it Gaia}$ $G$-band magnitude-dependent zero-point offset of $\\varpi_{\\rm seis} - \\varpi_{Gaia} = 52.8 \\pm 2.4 {\\rm\\ (rand.)} \\pm 8.6 {\\rm\\ (syst.)} - (150.7 \\pm 22.7)(\ u_{\\rm eff} - 1.5) - (4.21 \\pm 0.77)(G - 12.2) \\mu{\\rm as}$, in the sense that ${\\rm \\it Gaia}$ parallaxes are too small. The offset is found in high and low-extinction samples, as well as among both shell H-burning red giant stars and core He-burning red clump stars. We show that errors in the asteroseismic radius and temperature scales may be distinguished from errors in the ${\\rm \\it Gaia}$ parallax scale. We estimate systematic effects on the inferred global ${\\rm \\it Gaia}$ parallax offset, $c$, due to radius and temperature systematics, as well as choices in bolometric correction and the adopted form for ${\\rm \\it Gaia}$ parallax spatial correlations. Because of possible spatially-correlated parallax errors, as discussed by the ${\\rm \\it Gaia}$ team, our ${\\rm \\it Gaia}$ parallax offset model is specific to the ${\\rm \\it Kepler}$ field, but broadly compatible with the magnitude- and color-dependent offset inferred by the ${\\rm \\it Gaia}$ team and several subsequent investigations using independent methods.

Journal ArticleDOI
TL;DR: In this article, the authors used trigonometric parallaxes and proper motions of molecular masers associated with very young high-mass stars to infer the structure of the Milky Way.
Abstract: We compile and analyze approximately 200 trigonometric parallaxes and proper motions of molecular masers associated with very young high-mass stars. Most of the measurements come from the BeSSeL Survey using the VLBA and the Japanese VERA project. These measurements strongly suggest that the Milky Way is a four-arm spiral, with some extra arm segments and spurs. Fitting log-periodic spirals to the locations of the masers, allowing for ?kinks? in the spirals and using well-established arm tangencies in the fourth Galactic quadrant, allows us to significantly expand our view of the structure of the Milky Way. We present an updated model for its spiral structure and incorporate it into our previously published parallax-based distance-estimation program for sources associated with spiral arms. Modeling the three-dimensional space motions yields estimates of the distance to the Galactic center,

Journal ArticleDOI
TL;DR: In this paper, the internal kinematics of young star clusters at sub-km/s level were studied, with implications for understanding how star clusters form and evolve, and they used a sample of 28 star clusters and associations with ages from 1-5 Myr.
Abstract: The Gaia mission has opened a new window into the internal kinematics of young star clusters at the sub-km/s level, with implications for our understanding of how star clusters form and evolve. We use a sample of 28 clusters and associations with ages from 1-5 Myr, where lists of members are available from previous X-ray, optical, and infrared studies. Proper motions from Gaia DR2 reveals that at least 75% of these systems are expanding; however, rotation is only detected in one system. Typical expansion velocities are on the order of ~0.5 km/s, and, in several systems, there is a positive radial gradient in expansion velocity. Systems that are still embedded in molecular clouds are less likely to be expanding than those that are partially or fully revealed. One-dimensional velocity dispersions, which range from 1 to 3 km/s, imply that most of the stellar systems in our sample are supervirial and that some are unbound. In star-forming regions that contain multiple clusters or subclusters, we find no evidence that these groups are coalescing, implying that hierarchical cluster assembly, if it occurs, must happen rapidly during the embedded stage.

Journal ArticleDOI
TL;DR: In this paper, the mass and radius of the millisecond pulsar PSR J0030+0451 have been inferred via pulse-profile modeling of X-ray data obtained by NASA's Neutron Star Interior Composition Explorer (NICER) mission.
Abstract: Both the mass and radius of the millisecond pulsar PSR J0030+0451 have been inferred via pulse-profile modeling of X-ray data obtained by NASA's Neutron Star Interior Composition Explorer (NICER) mission. In this Letter we study the implications of the mass–radius inference reported for this source by Riley et al. for the dense matter equation of state (EoS), in the context of prior information from nuclear physics at low densities. Using a Bayesian framework we infer central densities and EoS properties for two choices of high-density extensions: a piecewise-polytropic model and a model based on assumptions of the speed of sound in dense matter. Around nuclear saturation density these extensions are matched to an EoS uncertainty band obtained from calculations based on chiral effective field theory interactions, which provide a realistic description of atomic nuclei as well as empirical nuclear matter properties within uncertainties. We further constrain EoS expectations with input from the current highest measured pulsar mass; together, these constraints offer a narrow Bayesian prior informed by theory as well as laboratory and astrophysical measurements. The NICER mass–radius likelihood function derived by Riley et al. using pulse-profile modeling is consistent with the highest-density region of this prior. The present relatively large uncertainties on mass and radius for PSR J0030+0451 offer, however, only a weak posterior information gain over the prior. We explore the sensitivity to the inferred geometry of the heated regions that give rise to the pulsed emission, and find a small increase in posterior gain for an alternative (but less preferred) model. Lastly, we investigate the hypothetical scenario of increasing the NICER exposure time for PSR J0030+0451.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the detection of water vapor and the likely presence of liquid and icy water clouds in the atmosphere of the 2.6 R ⊕ habitable-zone planet K2-18b.
Abstract: Results from the Kepler mission indicate that the occurrence rate of small planets (<3 R⊕) in the habitable zone of nearby low-mass stars may be as high as 80%. Despite this abundance, probing the conditions and atmospheric properties on any habitable-zone planet is extremely difficult and has remained elusive to date. Here, we report the detection of water vapor and the likely presence of liquid and icy water clouds in the atmosphere of the 2.6 R ⊕ habitable-zone planet K2-18b. The simultaneous detection of water vapor and clouds in the mid-atmosphere of K2-18b is particularly intriguing because K2-18b receives virtually the same amount of total insolation from its host star (1368^(+114)_(-107) W m⁻²) as the Earth receives from the Sun (1361 W m⁻²), resulting in the right conditions for water vapor to condense and explain the detected clouds. In this study we observed nine transits of K2-18b using Hubble Space Telescope/WFC3 in order to achieve the necessary sensitivity to detect the water vapor, and we supplement this data set with Spitzer and K2 observations to obtain a broader wavelength coverage. While the thick hydrogen-dominated envelope we detect on K2-18b means that the planet is not a true Earth analog, our observations demonstrate that low-mass habitable-zone planets with the right conditions for liquid water are accessible with state-of-the-art telescopes.

Journal ArticleDOI
TL;DR: In this paper, the Formation of the First Stars (STARLIGHT) project has been used to study the formation of the first stars in the Spanish Spanish National Geographic Channel (SNVC).
Abstract: National Science Foundation through AAG award [AST 1518183]; HST award [HST-AR-15013.005-A]; European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) via the ERC Advanced Grant "STARLIGHT: Formation of the First Stars" [339177]; Spanish Ministry of Economy and Competitiveness (MINECO) [RYC-2015-1807]

Journal ArticleDOI
TL;DR: In this paper, the authors studied the evolution of helium stars with initial masses in the range 1.6 to 120 Msun, including the effects of mass loss by winds, and derived a new maximum mass for black holes derived from pulsational pair-instability supernovae.
Abstract: The evolution of helium stars with initial masses in the range 1.6 to 120 Msun is studied, including the effects of mass loss by winds. These stars are assumed to form in binary systems when their expanding hydrogenic envelopes are promptly lost just after helium ignition. Significant differences are found with single star evolution, chiefly because the helium core loses mass during helium burning rather than gaining it from hydrogen shell burning. Consequently presupernova stars for a given initial mass function have considerably smaller mass when they die and will be easier to explode. Even accounting for this difference, the helium stars with mass loss develop more centrally condensed cores that should explode more easily than their single-star counterparts. The production of low mass black holes may be diminished. Helium stars with initial masses below 3.2 Msun experience significant radius expansion after helium depletion, reaching blue supergiant proportions. This could trigger additional mass exchange or affect the light curve of the supernova. The most common black hole masses produced in binaries is estimated to be about 9 Msun. A new maximum mass for black holes derived from pulsational pair-instability supernovae is derived - 46 Msun, and a new potential gap at 10 - 12 Msun is noted. Models pertinent to SN 2014ft are presented and a library of presupernova models is generated.

Journal ArticleDOI
Maya Fishbach1, R. Gray2, I. Magaña Hernandez3, H. Qi3  +322 moreInstitutions (52)
TL;DR: In this paper, a statistical standard siren analysis of GW170817 is presented, which considers all galaxies brighter than 0.626{L}_{B}^{\star }$ as equally likely to host a binary neutron star merger.
Abstract: We perform a statistical standard siren analysis of GW170817. Our analysis does not utilize knowledge of NGC 4993 as the unique host galaxy of the optical counterpart to GW170817. Instead, we consider each galaxy within the GW170817 localization region as a potential host; combining the redshifts from all of the galaxies with the distance estimate from GW170817 provides an estimate of the Hubble constant, H 0. Considering all galaxies brighter than $0.626{L}_{B}^{\star }$ as equally likely to host a binary neutron star merger, we find ${H}_{0}={77}_{-18}^{+37}$ km s−1 Mpc−1 (maximum a posteriori and 68.3% highest density posterior interval; assuming a flat H 0 prior in the range $\left[10,220\right]$ km s−1 Mpc−1). We explore the dependence of our results on the thresholds by which galaxies are included in our sample, and we show that weighting the host galaxies by stellar mass or star formation rate provides entirely consistent results with potentially tighter constraints. By applying the method to simulated gravitational-wave events and a realistic galaxy catalog we show that, because of the small localization volume, this statistical standard siren analysis of GW170817 provides an unusually informative (top 10%) constraint. Under optimistic assumptions for galaxy completeness and redshift uncertainty, we find that dark binary neutron star measurements of H 0 will converge as $40 \% /\sqrt{(N)}$, where N is the number of sources. While these statistical estimates are inferior to the value from the counterpart standard siren measurement utilizing NGC 4993 as the unique host, ${H}_{0}={76}_{-13}^{+19}$ km s−1 Mpc−1 (determined from the same publicly available data), our analysis is a proof-of-principle demonstration of the statistical approach first proposed by Bernard Schutz over 30 yr ago.

Journal ArticleDOI
Marco Ajello1, Makoto Arimoto2, Magnus Axelsson3, Magnus Axelsson4  +149 moreInstitutions (37)
TL;DR: In this article, the authors presented the second catalog of LAT-detected GRBs, covering the first 10 yr of operations, from 2008 to 2018 August 4, and found a total of 186 GRBs are found; of these, 91 showed emission in the range 30-100 MeV (17 of which were seen only in this band) and 169 are detected above 100 MeV.
Abstract: The Large Area Telescope (LAT) aboard the Fermi spacecraft routinely observes high-energy emission from gamma-ray bursts (GRBs). Here we present the second catalog of LAT-detected GRBs, covering the first 10 yr of operations, from 2008 to 2018 August 4. A total of 186 GRBs are found; of these, 91 show emission in the range 30–100 MeV (17 of which are seen only in this band) and 169 are detected above 100 MeV. Most of these sources were discovered by other instruments (Fermi/GBM, Swift/BAT, AGILE, INTEGRAL) or reported by the Interplanetary Network (IPN); the LAT has independently triggered on four GRBs. This catalog presents the results for all 186 GRBs. We study onset, duration, and temporal properties of each GRB, as well as spectral characteristics in the 100 MeV–100 GeV energy range. Particular attention is given to the photons with the highest energy. Compared with the first LAT GRB catalog, our rate of detection is significantly improved. The results generally confirm the main findings of the first catalog: the LAT primarily detects the brightest GBM bursts, and the high-energy emission shows delayed onset as well as longer duration. However, in this work we find delays exceeding 1 ks and several GRBs with durations over 10 ks. Furthermore, the larger number of LAT detections shows that these GRBs not only cover the high-fluence range of GBM-detected GRBs but also sample lower fluences. In addition, the greater number of detected GRBs with redshift estimates allows us to study their properties in both the observer and rest frames. Comparison of the observational results with theoretical predictions reveals that no model is currently able to explain all results, highlighting the role of LAT observations in driving theoretical models.

Journal ArticleDOI
TL;DR: In this paper, the first extensive radio to γ-ray observations of a fast-rising blue optical transient, AT 2018cow, over its first ~100 days were presented.
Abstract: We present the first extensive radio to γ-ray observations of a fast-rising blue optical transient, AT 2018cow, over its first ~100 days. AT 2018cow rose over a few days to a peak luminosity L_(pk) ~ 4 × 10^(44) erg s^(−1), exceeding that of superluminous supernovae (SNe), before declining as L ∝ t^(−2). Initial spectra at δt ≾ 15 days were mostly featureless and indicated large expansion velocities v ~ 0.1c and temperatures reaching T ~ 3 × 10^4 K. Later spectra revealed a persistent optically thick photosphere and the emergence of H and He emission features with v ~ 4000 km s^(−1) with no evidence for ejecta cooling. Our broadband monitoring revealed a hard X-ray spectral component at E ≥ 10 keV, in addition to luminous and highly variable soft X-rays, with properties unprecedented among astronomical transients. An abrupt change in the X-ray decay rate and variability appears to accompany the change in optical spectral properties. AT 2018cow showed bright radio emission consistent with the interaction of a blast wave with v_(sh) ~ 0.1c with a dense environment (M ~ 10^(-3) – 10^(-4) M⊙ Yr^(-1) for v w = 1000 km s−1). While these properties exclude ^(56)Ni-powered transients, our multiwavelength analysis instead indicates that AT 2018cow harbored a "central engine," either a compact object (magnetar or black hole) or an embedded internal shock produced by interaction with a compact, dense circumstellar medium. The engine released ~10^(50)–10^(51.5) erg over ~10^3–10^5 s and resides within low-mass fast-moving material with equatorial–polar density asymmetry (M_(ej,fast) ≾ 0.3 M ☉). Successful SNe from low-mass H-rich stars (like electron-capture SNe) or failed explosions from blue supergiants satisfy these constraints. Intermediate-mass black holes are disfavored by the large environmental density probed by the radio observations.