scispace - formally typeset
Search or ask a question
Institution

Australia Telescope National Facility

FacilitySydney, New South Wales, Australia
About: Australia Telescope National Facility is a facility organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Galaxy & Pulsar. The organization has 699 authors who have published 2774 publications receiving 151507 citations. The organization is also known as: ATNF.


Papers
More filters
Journal ArticleDOI
TL;DR: The Spectrographic Areal Unit for Research on Optical Nebulae (SAURON) integral-field spectroscopy and Swift Ultraviolet Optical Telescope (UVOT) observations of molecular outflow host galaxy NGC 1266 have been used in this article.
Abstract: We present new Spectrographic Areal Unit for Research on Optical Nebulae (SAURON) integral-field spectroscopy and Swift Ultraviolet Optical Telescope (UVOT) observations of molecular outflow host galaxy NGC 1266 that indicate NGC 1266 has experienced a rapid cessation of star formation. Both the SAURON maps of stellar population age and the Swift UVOT observations demonstrate the presence of young (<1 Gyr) stellar populations within the central 1 kpc, while existing Combined Array for Research in Millimeter-Wave Astronomy CO(1-0) maps indicate that the sites of current star formation are constrained to only the inner few hundred parsecs of the galaxy. The optical spectrum of NGC 1266 from Moustakas & Kennicutt reveal a characteristic poststarburst (K+A) stellar population, and Davis et al. confirm that ionized gas emission in the system originate from a shock. Galaxies with K+A spectra and shock-like ionized gas line ratios may comprise an important, overlooked segment of the poststarburst population, containing exactly those objects in which the active galactic nucleus (AGN) is actively expelling the star-forming material. While AGN activity is not the likely driver of the poststarburst event that occurred 500 Myr ago, the faint spiral structure seen in the Hubble Space Telescope Wide-field Camera 3 Y-, J- and H-band imaging seems to point to the possibility of gravitational torques being the culprit. If the molecular gas were driven into the center at the same time as the larger scale galaxy disk underwent quenching, the AGN might be able to sustain the presence of molecular gas for ≳ 1 Gyr by cyclically injecting turbulent energy into the dense molecular gas via a radio jet, inhibiting star formation.

47 citations

Journal ArticleDOI
TL;DR: A pulsar timing array (PTA) is a program of regular, high-precision timing observations of a widely distributed array of millisecond pulsars as mentioned in this paper, which is used for ultra-low-frequency gravitational wave searches and highlights opportunities for the near future.
Abstract: A pulsar timing array (PTA) refers to a program of regular, high-precision timing observations of a widely distributed array of millisecond pulsars. Here we review the status of the three primary PTA projects and the joint International Pulsar Timing Array project. We discuss current results related to ultra-low-frequency gravitational wave searches and highlight opportunities for the near future.

47 citations

Proceedings ArticleDOI
04 Mar 2008
TL;DR: The Parkes Pulsar Timing Array (PPTA) is an implementation of such a system in which 20 millisecond pulsars have been observed using the Parkes radio telescope at three frequencies at intervals of two-three weeks for more than two years as mentioned in this paper.
Abstract: Detection and study of gravitational waves from astrophysical sources is a major goal of current astrophysics. Ground‐based laser‐interferometer systems such as LIGO and VIRGO are sensitive to gravitational waves with frequencies of order 100 Hz, whereas space‐based systems such as LISA are sensitive in the millihertz regime. Precise timing observations of a sample of millisecond pulsars widely distributed on the sky have the potential to detect gravitational waves at nanohertz frequencies. Potential sources of such waves include binary super‐massive black holes in the cores of galaxies, relic radiation from the inflationary era and oscillations of cosmic strings. The Parkes Pulsar Timing Array (PPTA) is an implementation of such a system in which 20 millisecond pulsars have been observed using the Parkes radio telescope at three frequencies at intervals of two—three weeks for more than two years. Analysis of these data has been used to limit the gravitational wave background in our Galaxy and to constrain some models for its generation. The data have also been used to investigate fluctuations in the interstellar and Solar‐wind electron density and have the potential to investigate the stability of terrestrial time standards and the accuracy of solar‐system ephemerides.

47 citations

Journal ArticleDOI
TL;DR: The results of 13 years of timing observations of a unique binary pulsar, PSR B1259$-$63, which has a massive B2e star companion are summarized in this paper.
Abstract: This paper summarizes the results of 13 years of timing observations of a unique binary pulsar, PSR B1259$-$63, which has a massive B2e star companion. The data span encompasses four complete orbits and includes the periastron passages in 1990, 1994, 1997 and 2000. Changes in dispersion measure occurring around the 1994, 1997 and 2000 periastrons are measured and accounted for in the timing analysis. There is good evidence for a small glitch in the pulsar period in 1997 August, not long after the 1997 periastron, and a significant frequency second derivative indicating timing noise. We find that spin-orbit coupling with secular changes in periastron longitude and projected semi-major axis ($x$) cannot account for the observed period variations over the whole data set. While fitting the data fairly well, changes in pulsar period parameters at each periastron seem ruled out both by X-ray observations and by the large apparent changes in pulsar frequency derivative. Essentially all of the systematic period variations are accounted for by a model consisting of the 1997 August glitch and step changes in $x$ at each periastron. These changes must be due to changes in the orbit inclination, but we can find no plausible mechanism to account for them. It is possible that timing noise may mask the actual changes in orbital parameters at each periastron, but the good fit to the data of the $x$ step-change model suggests that short-term timing noise is not significant.

47 citations

Journal ArticleDOI
TL;DR: In this paper, radio polarimetry observations for nine southern pulsars were reported, including PSR J1513-5908 (B1509-58) and PSRJ1316-6232 (B1414-7232), and they were used for directly testing the magnetospheric model of Melatos.
Abstract: We report on radio polarimetry observations for nine southern pulsars. Six of the nine in the sample are young, with characteristic ages under 100 kyr and high spin-down luminosities. All six show a significant degree of linear polarization. We also confirm a previously noticed trend in which the degree of linear polarization increases with spin-down luminosity. Where possible, we have used the rotating-vector model of the pulsar emission geometry to fit the observed position angle data. Our fit for PSR J1513-5908 (B1509-58) in particular is useful for directly testing the magnetospheric model of Melatos in combination with further timing observations. For this pulsar we find that a magnetic inclination angle greater than or equal to 60° is excluded at the 3 σ level and that the geometry suggested by the morphology of an apparent bipolar X-ray outflow is marginally inconsistent with the Melatos model. We also report on the polarimetry of three older pulsars: PSR J0045-7319, PSR J1627-4850, and PSR J1316-6232 (whose discovery we also report). Of these, only PSR J0045-7319 shows significant polarization.

47 citations


Authors

Showing all 701 results

NameH-indexPapersCitations
Fabian Walter14699983016
Lei Zhang130231286950
Roger W. Romani10845343942
Ingrid H. Stairs10049735863
Bryan Gaensler9984439851
David Jones9842062627
Matthew Kerr9836536371
Fernando Camilo9756234657
Lister Staveley-Smith9559936924
Laura Bonavera9421859643
Richard N. Manchester9150936072
Christine D. Wilson9052839198
Andrew M. Hopkins9049731604
Xing-Jiang Zhu8927257629
Simon Johnston8751527693
Network Information
Related Institutions (5)
Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

INAF
30.8K papers, 1.2M citations

96% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

95% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20222
202169
202064
201976
201872
201778