scispace - formally typeset
Search or ask a question
Institution

Australia Telescope National Facility

FacilitySydney, New South Wales, Australia
About: Australia Telescope National Facility is a facility organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Galaxy & Pulsar. The organization has 699 authors who have published 2774 publications receiving 151507 citations. The organization is also known as: ATNF.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the discovery of four millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) pulsar survey was conducted at the Parkes 64m radio telescope.
Abstract: We report on the discovery of four millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) pulsar survey being conducted at the Parkes 64-m radio telescope. All four MSPs are in binary systems and are likely to have white dwarf companions. In addition, we present updated timing solutions for 12 previously published HTRU MSPs, revealing new observational parameters such as five proper motion measurements and significant temporal dispersion measure variations in PSR J1017−7156. We discuss the case of PSR J1801−3210, which shows no significant period derivative (˙ P) after four years of timing data. Our best-fit solution shows a ˙ P of the order of 10 −23 , an extremely small number compared to that of a typical MSP. However, it is likely that the pulsar lies beyond the Galactic Centre, and an unremarkable intrinsic ˙ P is reduced to close to zero by the Galactic potential acceleration. Furthermore, we highlight the potential to employ PSR J1801−3210 in the strong equivalence principle test due to its wide and circular orbit. In a broader comparison with the known MSP population, we suggest a correlation between higher mass functions and the presence of eclipses in 'very low-mass binary pulsars', implying that eclipses are observed in systems with high orbital inclinations. We also suggest that the distribution of the total mass of binary systems is inversely-related to the Galactic height distribution. Finally, we report on the first detection of PSRs J1543−5149 and J1811−2404 as gamma-ray pulsars.

63 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Lovell, 94m equivalent Westerbork Synthesis Radio Telescope (WSRT) and 100m Effelsberg radio telescopes to investigate the simultaneous single-pulse properties of the radio emitting magnetar XTE J1810-197 at frequencies of 1.4, 4.8 and 8.35 GHz during 2006 May and July.
Abstract: We have used the 76-m Lovell, 94-m equivalent Westerbork Synthesis Radio Telescope (WSRT) and 100-m Effelsberg radio telescopes to investigate the simultaneous single-pulse properties of the radio emitting magnetar Anomalous X-ray Pulsar (AXP) XTE J1810-197 at frequencies of 1.4, 4.8 and 8.35 GHz during 2006 May and July. We study the magnetar's pulse-energy distributions which are found to be very peculiar as they are changing on time-scales of days and cannot be fit by a single statistical model. The magnetar exhibits strong spiky single giant-pulse-like subpulses, but they do not fit the definition of the giant pulse or giant micropulse phenomena. Measurements of the longitude-resolved modulation index reveal a high degree of intensity fluctuations on day-to-day time-scales and dramatic changes across pulse phase. We find the frequency evolution of the modulation index values differs significantly from what is observed in normal radio pulsars. We find that no regular drifting subpulse phenomenon is present at any of the observed frequencies at any observing epoch. However, we find a quasi-periodicity of the subpulses present in the majority of the observing sessions. A correlation analysis indicates a relationship between components from different frequencies. We discuss the results of our analysis in light of the emission properties of normal radio pulsars and a recently proposed model which takes radio emission from magnetars into consideration.

63 citations

Journal ArticleDOI
TL;DR: The results of the first complete survey of the Large (LMC) and Small (SMC) Magellanic Clouds for 6668-MHz methanol and 6035-MHz excited-state hydroxyl masers were presented in this article.
Abstract: We present the results of the first complete survey of the Large (LMC) and Small (SMC) Magellanic Clouds for 6668-MHz methanol and 6035-MHz excited-state hydroxyl masers. In addition to the survey, higher sensitivity targeted searches towards known star formation regions were conducted. The observations yielded the discovery of a fourth 6668-MHz methanol maser in the LMC, found towards the star-forming region N160a, and a second 6035-MHz excited-state hydroxyl maser, found towards N157a. We have also re-observed the three previously known 6668-MHz methanol masers and the single 6035-MHz hydroxyl maser. We failed to detect emission from either transition in the SMC. All observations were initially made using the Methanol Multibeam (MMB) survey receiver on the 64-m Parkes telescope as part of the MMB project and accurate positions have been measured with the Australia Telescope Compact Array. We compare the maser populations in the Magellanic Clouds with those of our Galaxy and discuss their implications for the relative rates of massive star formation, heavy metal abundance and the abundance of complex molecules. The LMC maser populations are demonstrated to be smaller than their Milky Way counterparts. Methanol masers are underabundant by a factor of ∼45, whilst hydroxyl and water masers are a factor of ∼10 less abundant than our Galaxy.

63 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study the far-infrared emission from the nearby spiral galaxy M 33 in order to investigate the physical properties of the dust such as its temperature and luminosity density across the galaxy.
Abstract: In the framework of the open-time key program “Herschel M 33 extended survey (HerM33es)”, we study the far-infrared emission from the nearby spiral galaxy M 33 in order to investigate the physical properties of the dust such as its temperature and luminosity density across the galaxy. Taking advantage of the unique wavelength coverage (100, 160, 250, 350, and 500 μm) of the Herschel Space Observatory and complementing our dataset with Spitzer-IRAC 5.8 and 8 μm and Spitzer-MIPS 24 and 70 μm data, we construct temperature and luminosity density maps by fitting two modified blackbodies of a fixed emissivity index of 1.5. We find that the “cool” dust grains are heated to temperatures of between 11 K and 28 K, with the lowest temperatures being found in the outskirts of the galaxy and the highest ones both at the center and in the bright HII regions. The infrared/submillimeter total luminosity (5–1000 μm) is estimated to be 1.9 × 10^9 _(-4.4×10)^8^(+4.0×10)^8L_⊙. Fifty-nine percent of the total infrared/submillimeter luminosity of the galaxy is produced by the “cool” dust grains (~15 K), while the remaining 41% is produced by “warm” dust grains (~55 K). The ratio of the cool-to-warm dust luminosity is close to unity (within the computed uncertainties), throughout the galaxy, with the luminosity of the cool dust being slightly higher at the center than the outer parts of the galaxy. Decomposing the emission of the dust into two components (one emitted by the diffuse disk of the galaxy and one emitted by the spiral arms), we find that the fraction of the emission from the disk in the mid-infrared (24 μm) is 21%, while it gradually rises up to 57% in the submillimeter (500 μm). We find that the bulk of the luminosity comes from the spiral arm network that produces 70% of the total luminosity of the galaxy with the rest coming from the diffuse dust disk. The “cool” dust inside the disk is heated to temperatures in a narrow range between 18 K and 15 K (going from the center to the outer parts of the galaxy).

62 citations

Journal ArticleDOI
TL;DR: The detected HI tail shows for the first time direct evidence of gas stripping in HCG 44, and highlights that deep HI observations over a large field are needed to gather a complete census of this kind of events in the local Universe.
Abstract: We report the discovery of a giant HI tail in the intragroup medium of HCG 44 as part of the ATLAS3D survey. The tail is ˜ 300 kpc long in projection and contains ˜ 5 × 108 M⊙ of HI. We detect no diffuse stellar light at the location of the tail down to ˜ 28.5 mag arcsec- 2 in g band. We speculate that the tail might have formed as gas was stripped from the outer regions of NGC 3187 (a member of HCG 44) by the group tidal field. In this case, a simple model indicates that about 1/3 of the galaxy's HI was stripped during a time interval of <1 Gyr. Alternatively, the tail may be the remnant of an interaction between HCG 44 and NGC 3162, a spiral galaxy now ˜ 650 kpc away from the group. Regardless of the precise formation mechanism, the detected HI tail shows for the first time direct evidence of gas stripping in HCG 44. It also highlights that deep HI observations over a large field are needed to gather a complete census of this kind of events in the local Universe.

62 citations


Authors

Showing all 701 results

NameH-indexPapersCitations
Fabian Walter14699983016
Lei Zhang130231286950
Roger W. Romani10845343942
Ingrid H. Stairs10049735863
Bryan Gaensler9984439851
David Jones9842062627
Matthew Kerr9836536371
Fernando Camilo9756234657
Lister Staveley-Smith9559936924
Laura Bonavera9421859643
Richard N. Manchester9150936072
Christine D. Wilson9052839198
Andrew M. Hopkins9049731604
Xing-Jiang Zhu8927257629
Simon Johnston8751527693
Network Information
Related Institutions (5)
Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

INAF
30.8K papers, 1.2M citations

96% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

95% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20222
202169
202064
201976
201872
201778