scispace - formally typeset
Search or ask a question
Institution

Defence Metallurgical Research Laboratory

FacilityHyderabad, India
About: Defence Metallurgical Research Laboratory is a facility organization based out in Hyderabad, India. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 1208 authors who have published 2662 publications receiving 51663 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe various approaches and advancements in the metallic, ceramic, and composite armour materials and new dynamic armour systems that are essential to improve the survivability of armoured vehicles in the future multi-spectral battlefied scenarios.
Abstract: Protection creates a shift in the internal paradigm of the soldier and leads to multiplied psychological stamina for moving fearlessly in the battlefield which generates a major force-multiplier effect. Hence, the mechanized forces are still likely to be one of the dominant forces on the futuristic battlefield and would be the primary target of enemy forces capable of engaging from tank guns up to 4-5 km in a direct fire mode and up to 8-10 km in an indirect fire modes. Increased protection is possible only using advanced armour technology. Throughout the history of warfare, materials technologies have had a significant impact on land-combat force capabilities. Armour materials have progressed through improvements in metallic systems and development of advanced, lightweight (low areal density) composite materials. The advancements in ceramic systems have further improved the performance. Similarly, the advances in development of explosive reactive armour has generated efficient armour system against all contemporary high explosive antitank (HEAT) ammunition and missile threats for armoured vehicles. Yet, to achieve armour performance exceeding that of the current light combat vehicles and main battle tanks for new vehicular systems, weighing significantly less than the present combat vehicles, advances in new armour materials, systems, and survivability technologies are required. This paper describes various approaches and advancements in the metallic, ceramic, and composite armour materials and new dynamic armour systems that are essential to improve the survivability of armoured vehicles in the futurisitic multi-spectral battlefied scenarios. Defence Science Journal, 2011, 61(4), pp.394-402 , DOI:http://dx.doi.org/10.14429/dsj.61.365

39 citations

Journal ArticleDOI
TL;DR: In this paper, electron beam and friction welding studies have been carried out on a TIMET 834, a near-α titanium alloy, and the impact toughness of both the welds was comparable.

39 citations

Journal ArticleDOI
TL;DR: In this paper, a continuous drive friction welding process was used to join high nitrogen austenitic stainless steel and nickel free high nitrogen stainless steel specimens by varying the amount of forge (upsetting) force and keeping other friction welding parameters such as friction force, burn-off, upset time and speed of rotation as constant at appropriate levels.
Abstract: a b s t r a c t In the present work, nickel free high nitrogen austenitic stainless steel specimens were joined by continuous drive friction welding process by varying the amount of forge (upsetting) force and keeping other friction welding parameters such as friction force, burn-off, upset time and speed of rotation as constant at appropriate levels. The joint characterization studies include microstructural examination and evaluation of mechanical (micro-hardness, impact toughness and tensile) and pitting corrosion behaviour. The integrity of the joint, as determined by the optical microscopy was very high and no crack and area of incomplete bonding were observed. Welds exhibited poor Charpy impact toughness than the parent material. Toughness for friction weld specimens decreased with increase in forge force. The tensile properties of all the welds were almost the same (irrespective of the value of the applied forge force) and inferior to those of the parent material. The joints failed in the weld region for all the weld specimens. Weldments exhibited lower pitting corrosion resistance than the parent material and the corrosion resistance of the weld specimens was found to decrease with increase in forge force.

38 citations

Journal ArticleDOI
TL;DR: In this paper, closed cell aluminium foam has been examined with respect to crash protection systems, stiff and strong light weight structures and sound absorbing panels / enclosures for use in automotive systems.
Abstract: Closed cell aluminium foam has been examined with respect to crash protection systems, stiff and strong light weight structures and sound absorbing panels / enclosures for use in automotive systems. Monotonic compression tests revealed that the crash box made from aluminium foam-filled steel tube showed twice the energy absorption compared to empty crash box. Flexural studies on foam-filled thin walled aluminium extruded section showed higher resistance to bending (7.5 kN) against empty Al-section (5.8 kN). Differences in the mechanisms of deformation between foam filled sections and their empty counterparts were studied in compression and bend loading conditions. Acoustic behaviour was evaluated in the as-received foam and in foams post processed to increase cell interconnectivity. High sound absorption coefficients were observed in most conditions. The optimum combination of high sound absorption coefficient and frequency range occurred in a crushed foam with good cell interconnectivity.

38 citations

Journal ArticleDOI
TL;DR: A review of the development of titanium casting technology is given in this article, where it is shown that Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings.
Abstract: Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

38 citations


Authors

Showing all 1215 results

NameH-indexPapersCitations
Rajiv S. Mishra6459122210
G. Sundararajan462418402
Dipankar Banerjee443669025
Satyam Suwas434127655
G. Madhusudhan Reddy381684580
Animesh Dutta382997014
Om Prakash Pandey374416403
Shrikant V. Joshi342294119
Arumugam Pandurangan341833708
Dibyendu Ganguli331473122
K. T. Jacob333645026
E. S. R. Gopal312374191
Rahul Mitra311913698
Bhaskar Majumdar301603065
Jainagesh A. Sekhar292192524
Network Information
Related Institutions (5)
University of Science and Technology Beijing
44.4K papers, 623.2K citations

87% related

National Institute for Materials Science
29.2K papers, 880.9K citations

86% related

Northwestern Polytechnical University
56K papers, 657K citations

85% related

Indian Institute of Technology Madras
36.4K papers, 590.4K citations

84% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202212
2021125
2020111
2019153
2018172