scispace - formally typeset
Search or ask a question
Institution

Defence Metallurgical Research Laboratory

FacilityHyderabad, India
About: Defence Metallurgical Research Laboratory is a facility organization based out in Hyderabad, India. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 1208 authors who have published 2662 publications receiving 51663 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated CoRuFeX (X = Si, Ge) alloys by means of x-ray diffraction, Mossbauer spectroscopy, magnetic and magneto-transport measurements.

77 citations

Journal ArticleDOI
TL;DR: A wide variety of results have emerged on this transformation (since the interface phase was first observed over a decade ago) and at attempt is made to provide a consistent view-point for its formation as mentioned in this paper.

77 citations

Journal ArticleDOI
TL;DR: In this paper, a series of experiments was carried out wherein spinning armour piercing projectiles of core diameter 6.2 mm were fired on mild steel plates of thicknesses varying from 10 to 25 mm.

77 citations

Journal ArticleDOI
TL;DR: In this article, an analytical transmission electron microscopy was used to characterize precipitation processes in a model Al-4.0Cu-0.3Mg alloy aged at 200°C.

77 citations

Journal ArticleDOI
TL;DR: Amino functionalized multiwalled carbon nanotubes (A-MWCNTs) reinforced two phase and three phase nanocomposites were fabricated with 0.25, 0.5, and 1.0% loadings as discussed by the authors.
Abstract: Amino functionalized multiwalled carbon nanotubes (A-MWCNTs) reinforced two phase (A-MWNT–epoxy) and three phase (A-MWCNTs–carbon fiber–epoxy) nanocomposites were fabricated with 0.25 wt%, 0.5 wt% and 1.0 wt% loadings of A-MWCNTs. It is observed that, A-MWCNTs can improve the crosslink density of epoxy significantly. Fracture toughness of epoxy matrix is found to increase up to an optimum crosslink density improvement, indicating the role of crosslink density in imparting toughness to epoxy apart from the crack deflection contributions of A-MWCNTs. In addition to that, this study infers that, tensile, flexural properties of the three phase composites are strongly influenced by the fracture toughness changes of the matrices. This study, thus proposes additional mechanisms of toughness enhancements for two phase and mechanical properties enhancements for three phase composites imparted by A-MWCNTs.

76 citations


Authors

Showing all 1215 results

NameH-indexPapersCitations
Rajiv S. Mishra6459122210
G. Sundararajan462418402
Dipankar Banerjee443669025
Satyam Suwas434127655
G. Madhusudhan Reddy381684580
Animesh Dutta382997014
Om Prakash Pandey374416403
Shrikant V. Joshi342294119
Arumugam Pandurangan341833708
Dibyendu Ganguli331473122
K. T. Jacob333645026
E. S. R. Gopal312374191
Rahul Mitra311913698
Bhaskar Majumdar301603065
Jainagesh A. Sekhar292192524
Network Information
Related Institutions (5)
University of Science and Technology Beijing
44.4K papers, 623.2K citations

87% related

National Institute for Materials Science
29.2K papers, 880.9K citations

86% related

Northwestern Polytechnical University
56K papers, 657K citations

85% related

Indian Institute of Technology Madras
36.4K papers, 590.4K citations

84% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202212
2021125
2020111
2019153
2018172