scispace - formally typeset
Search or ask a question
Institution

Exponent

CompanyMenlo Park, California, United States
About: Exponent is a company organization based out in Menlo Park, California, United States. It is known for research contribution in the topics: Population & Risk assessment. The organization has 1589 authors who have published 2680 publications receiving 88140 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The weight of the evidence from the literature reviewed did not indicate that static EF have adverse biological effects in humans or animals, and the evidence strongly supported the role of superficial sensory stimulation of hair and skin as the basis for perception of the field, as well as reported indirect behavioral and physiological responses.
Abstract: High-voltage direct current (HVDC) lines are the technology of choice for the transport of large amounts of energy over long distances. The operation of these lines produces static electric fields (EF), but the data reviewed in previous assessments were not sufficient to assess the need for any environmental limit. The aim of this systematic review was to update the current state of research and to evaluate biological effects of static EF. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations, we collected and evaluated experimental and epidemiological studies examining biological effects of exposure to static EF in humans (n = 8) and vertebrates (n = 40). There is good evidence that humans and animals are able to perceive the presence of static EF at sufficiently high levels. Hair movements caused by electrostatic forces may play a major role in this perception. A large number of studies reported responses of animals (e.g., altered metabolic, immunologic or developmental parameters) to a broad range of static EF strengths as well, but these responses are likely secondary physiological responses to sensory stimulation. Furthermore, the quality of many of the studies reporting physiological responses is poor, which raises concerns about confounding. The weight of the evidence from the literature reviewed did not indicate that static EF have adverse biological effects in humans or animals. The evidence strongly supported the role of superficial sensory stimulation of hair and skin as the basis for perception of the field, as well as reported indirect behavioral and physiological responses. Physical considerations also preclude any direct effect of static EF on internal physiology, and reports that some physiological processes are affected in minor ways may be explained by other factors. While this literature does not support a level of concern about biological effects of exposure to static EF, the conditions that affect thresholds for human detection and possible annoyance at suprathreshold levels should be investigated.

42 citations

Journal ArticleDOI
TL;DR: The updated hazard assessment of styrene’s health effects indicates human cancers and ototoxicity remain potential concerns, however, mechanistic research on mouse lung tumors demonstrates these tumors are mouse-specific and of low relevance to human cancer risk.
Abstract: The potential chronic health risks of occupational and environmental exposure to styrene were evaluated to update health hazard and exposure information developed since the Harvard Center for Risk Analysis risk assessment for styrene was performed in 2002. The updated hazard assessment of styrene's health effects indicates human cancers and ototoxicity remain potential concerns. However, mechanistic research on mouse lung tumors demonstrates these tumors are mouse-specific and of low relevance to human cancer risk. The updated toxicity database supports toxicity reference levels of 20 ppm (equates to 400 mg urinary metabolites mandelic acid + phenylglyoxylic acid/g creatinine) for worker inhalation exposure and 3.7 ppm and 2.5 mg/kg bw/day, respectively, for general population inhalation and oral exposure. No cancer risk value estimates are proposed given the established lack of relevance of mouse lung tumors and inconsistent epidemiology evidence. The updated exposure assessment supports inhalation and ingestion routes as important. The updated risk assessment found estimated risks within acceptable ranges for all age groups of the general population and workers with occupational exposures in non-fiber-reinforced polymer composites industries and fiber-reinforced polymer composites (FRP) workers using closed-mold operations or open-mold operations with respiratory protection. Only FRP workers using open-mold operations not using respiratory protection have risk exceedances for styrene and should be considered for risk management measures. In addition, given the reported interaction of styrene exposure with noise, noise reduction to sustain levels below 85 dB(A) needs be in place.

42 citations

Journal ArticleDOI
TL;DR: A chance-constrained formulation of DEA that allows random variations in the data is proposed and it is suggested that using simulations provides a more flexible and computationally less cumbersome approach to studying the effects of noise in theData envelopment analysis.
Abstract: The mathematical programming-based technique data envelopment analysis (DEA) has often treated data as being deterministic. In response to the criticism that in most applications there is error and random noise in the data, a number of mathematically elegant solutions to incorporating stochastic variations in data have been proposed. In this paper, we propose a chance-constrained formulation of DEA that allows random variations in the data. We study properties of the ensuing efficiency measure using a small sample in which multiple inputs and a single output are correlated, and are the result of a stochastic process. We replicate the analysis using Monte Carlo simulations and conclude that using simulations provides a more flexible and computationally less cumbersome approach to studying the effects of noise in the data. We suggest that, in keeping with the tradition of DEA, the simulation approach allows users to explicitly consider different data generating processes and allows for greater flexibility in implementing DEA under stochastic variations in data.

42 citations

Journal ArticleDOI
TL;DR: The new estimates presented in this analysis incorporate what is considered to be the most likely range of plausible exposure values, and provide a better characterization of the potential workplace exposures for this cohort of rubber hydrochloride (Pliofilm) workers.
Abstract: The current cancer slope factor and occupational standards for benzene are based primarily on studies of the rubber hydrochloride (Pliofilm) workers. Previous assessments of this cohort by Rinsky et al. (1981, 1987), Crump and Allen (1984), and Paustenbach et al. (1992) relied on different assumptions about the available industrial hygiene data and workplace practices and processes over time, thereby yielding significantly different estimates of annual benzene exposures for many jobs. Given the inherent limitations and uncertainties involved in estimating historical exposures for this cohort, a probabilistic approach was used to better characterize their likely degree of benzene exposure. Ambient air exposures to benzene were based, in part, on the distribution of air sampling data collected at the Pliofilm facilities and assumptions about how workplace concentrations probably decreased over time as the threshold limit value (TLV) was lowered. The likely uptake of benzene from dermal exposures was estimated based on probability distributions for several exposure factors, including surface area, contact rate and duration, and skin absorption. The assessment also quantitatively accounts for improved engineering controls, extended work hours, incomplete Pliofilm production, and the use and effectiveness of respirators over time. All original data and assumptions are presented in this assessment, as is all new information obtained through additional interviews of former workers. Estimated benzene exposures at the 50th and 95th percentiles are reported as equivalent 8-h time-weighted average (TWA) airborne concentrations for 13 job categories from 1936 to 1965 (Akron I and II facilities) and 1939 to 1976 (St. Mary's facility). Data indicate that estimated equivalent airborne benzene concentrations for St. Mary's workers were highest for four job categories (Neutralizer, Quencher, Knifeman, Spreader), typically ranging from about 50 to 90 ppm during 1939-1946 (lower during 1942-1945), and 10 to 40 ppm during 1947-1976 at the 50th percentile. These estimates are 2-3 times greater than for other jobs in the Pliofilm process, and about 1.5 times less than those estimated at the 95th percentile. Estimates of equivalent airborne benzene concentrations for Akron I and II were about 1.5 times higher than for St. Mary's, but there is less confidence in these estimates, given the lack of industrial hygiene monitoring data for these facilities. Study results suggest that Paustenbach et al. (1992) generally over-estimated exposures for those job categories that had the highest exposure by about a factor of two to four. On the other hand, it was concluded that Rinsky et al. (1981, 1987) under-predicted benzene exposures for most jobs, and Crump and Allen (1984) both under- and overpredicted benzene exposures, depending on the specific job category and time period. The new estimates presented in this analysis incorporate what is considered to be the most likely range of plausible exposure values, and, accordingly, provide a better characterization of the potential workplace exposures for this cohort. These data could be combined with current or future mortality information to calculate a new cancer potency factor or occupational health standard for benzene.

42 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify LORE as a distinct category of early VLF events, whose signature may occur either on its own or alongside the short-lived typical early events.
Abstract: [1] Subionospheric VLF recordings are investigated in relation with intense cloud-to-ground (CG) lightning data. Lightning impacts the lower ionosphere via heating and ionization changes which produce VLF signal perturbations known as early VLF events. Typically, early events recover in about 100 s, but a small subclass does not recover for many minutes, known as long-recovery early events (LORE). In this study, we identify LORE as a distinct category of early VLF events, whose signature may occur either on its own or alongside the short-lived typical early VLF event. Since LORE onsets coincide with powerful lightning strokes of either polarity (±), we infer that they are due to long-lasting ionization changes in the uppermost D region ionosphere caused by electromagnetic pulses emitted by strong ± CG lightning peak currents of typically > 250 kA, which are also known to generate elves. The LORE perturbations are detected when the discharge is located within ~250 km from the great circle path of a VLF transmitter-receiver link. The probability of occurrence increases with stroke intensity and approaches unity for discharges with peak currents ≥ ~300 kA. LOREs are nighttime phenomena that occur preferentially, at least in the present regional data set, during winter when strong ± CG discharges are more frequent and intense. The evidence suggests LORE as a distinct signature representing the VLF fingerprint of elves, a fact which, although was predicted by theory, it escaped identification in the long-going VLF research of lightning effects in the lower ionosphere.

42 citations


Authors

Showing all 1593 results

NameH-indexPapersCitations
Hans-Olov Adami14590883473
Melvin E. Andersen8351726856
Joseph Katz8169127793
Lorna J. Gibson7517833835
Buddhima Indraratna6473515596
Barbara A. Goff6122711859
Jack S. Mandel6017122308
Antonio Gens5826914987
Ellen T. Chang5720911567
Dayang Wang551859513
Edmund Lau5218322520
Steven M. Kurtz522498066
Alfred J. Crosby512068310
Suresh H. Moolgavkar511698833
Michael T. Halpern5123716566
Network Information
Related Institutions (5)
University of Michigan
342.3K papers, 17.6M citations

79% related

University of California, Davis
180K papers, 8M citations

79% related

McGill University
162.5K papers, 6.9M citations

78% related

University of British Columbia
209.6K papers, 9.2M citations

78% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

78% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
20229
2021123
2020124
2019133
201888