scispace - formally typeset
Search or ask a question
Institution

Exponent

CompanyMenlo Park, California, United States
About: Exponent is a company organization based out in Menlo Park, California, United States. It is known for research contribution in the topics: Population & Risk assessment. The organization has 1589 authors who have published 2680 publications receiving 88140 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe the properties and characteristics of early very low frequency (VLF) signal perturbations, which exhibit long recovery times using subionospheric VLF transmitter data.
Abstract: [1] Lightning strokes are capable of initiating disturbances in the lower ionosphere, whose recoveries persist for many minutes. These events are remotely sensed via monitoring subionospherically propagating very low frequency (VLF) transmitter signals, which are perturbed as they pass through the region above the lightning stroke. In this paper we describe the properties and characteristics of the early VLF signal perturbations, which exhibit long recovery times using subionospheric VLF transmitter data from three identical receivers located at Algiers (Algeria), Tunis (Tunisia), and Sebha (Libya). The results indicate that the observation of long recovery events depends strongly on the modal structure of the signal electromagnetic field and the distance from the disturbed region and the receiver or transmitter locations. Comparison of simultaneously collected data at the three sites indicates that the role of the causative lightning stroke properties (e.g., peak current and polarity), or that of transient luminous events may be much less important. The dominant parameter which determines the duration of the recovery time and amplitude appears to be the modal structure of the subionospheric VLF probe signal at the ionospheric disturbance, where scattering occurs, and the subsequent modal structure that propagates to the receiver location.

20 citations

SW Hopkins1
01 Oct 1976
TL;DR: In this article, a test method for performing uniaxial low-cycle thermal mechanical fatigue tests at elevated temperatures on nickel-base superalloys is described, both smooth specimen crack initiation and notched specimen crack propagation testing is discussed.
Abstract: A test method is described for performing uniaxial low-cycle thermal mechanical fatigue tests at elevated temperatures on nickel-base superalloys. Both smooth specimen crack initiation and notched specimen crack propagation testing is discussed. Standard closed loop servohydraulic testing machines with closed loop electric induction heaters are utilized. The temperature and mechanical strain are independently controlled, allowing for a wide range of relationships between temperature and mechanical strain. Tubular specimens are directly inductively heated in air and cooled with compressed air. The temperature is measured with a radiation pyrometer which eliminates thermocouples and premature failures caused by welded thermocouples. Axial strain in the specimen is measured from machined internal ridges on the specimen utilizing a linear variable differential transformer and a quartz internal extensometer. An electronic system compensates for the thermal expansion component of strain for both the control loop and the recorders. This system permits direct recording of the load-induced mechanical strain. Load-strain hysteresis loops and strain-temperature plots can simply be recorded during the test.

20 citations

Journal ArticleDOI
TL;DR: Researchers in situations where it is challenging for individual agents to achieve the goals of RRI are compelled to develop organizations to facilitate RRI, and it is argued that individual researchers have a duty to collectivize.
Abstract: Responsible Research and Innovation (RRI) provides a framework for judging the ethical qualities of innovation processes, however guidance for researchers on how to implement such practices is limited. Exploring RRI in the context of nanotechnology, this paper examines how the dispersed and interdisciplinary nature of the nanotechnology field somewhat hampers the abilities of individual researchers to control the innovation process. The ad-hoc nature of the field of nanotechnology, with its fluid boundaries and elusive membership, has thus far failed to establish a strong collective agent, such as a professional organization, through which researchers could collectively steer technological development in light of social and environmental needs. In this case, individual researchers cannot innovate responsibly purely by themselves, but there is also no structural framework to ensure that responsible development of nanotechnologies takes place. We argue that, in such a case, individual researchers have a duty to collectivize. In short, researchers in situations where it is challenging for individual agents to achieve the goals of RRI are compelled to develop organizations to facilitate RRI. In this paper we establish and discuss the criteria under which individual researchers have this duty to collectivize.

20 citations

Proceedings ArticleDOI
TL;DR: A straight-forward, automated approach to performing sensitivity analyses using Monte Carlo simulation techniques is described, and provides a rational basis for dealing with uncertainty and ranges of parameters in accident reconstruction analyses.
Abstract: A straight-forward, automated approach to performing sensitivity analyses using Monte Carlo simulation techniques is described in this paper. Probability distributions are assigned to key input parameters, and results are expressed in the form of probability distributions of each of the desired output parameters. With this technique, it is possible to obtain quantitative results regarding the probability of results being within selected ranges. The approach is fast and automated, and provides a rational basis for dealing with uncertainty and ranges of parameters in accident reconstruction analyses.

20 citations

Journal ArticleDOI
TL;DR: Current developments in the use of molecular target sequencing similarity tools and thoughtful application of the adverse outcome pathway concept show promise for further advancement of read‐across approaches for testing EATS pathways in vertebrate ecological receptors.
Abstract: Recent regulatory testing programs have been designed to evaluate whether a chemical has the potential to interact with the endocrine system and could cause adverse effects. Some endocrine pathways are highly conserved among vertebrates, providing a potential to extrapolate data generated for one vertebrate taxonomic group to others (i.e., biological read-across). To assess the potential for biological read-across, we reviewed tools and approaches that support species extrapolation for fish, amphibians, birds, and reptiles. For each of the estrogen, androgen, thyroid, and steroidogenesis (EATS) pathways, we considered the pathway conservation across species and the responses of endocrine-sensitive endpoints. The available data show a high degree of confidence in the conservation of the hypothalamus-pituitary-gonadal axis between fish and mammals and the hypothalamus-pituitary-thyroid axis between amphibians and mammals. Comparatively, there is less empirical evidence for the conservation of other EATS pathways between other taxonomic groups, but this may be due to limited data. Although more information on sensitive pathways and endpoints would be useful, current developments in the use of molecular target sequencing similarity tools and thoughtful application of the adverse outcome pathway concept show promise for further advancement of read-across approaches for testing EATS pathways in vertebrate ecological receptors. Environ Toxicol Chem 2020;39:739-753. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

20 citations


Authors

Showing all 1593 results

NameH-indexPapersCitations
Hans-Olov Adami14590883473
Melvin E. Andersen8351726856
Joseph Katz8169127793
Lorna J. Gibson7517833835
Buddhima Indraratna6473515596
Barbara A. Goff6122711859
Jack S. Mandel6017122308
Antonio Gens5826914987
Ellen T. Chang5720911567
Dayang Wang551859513
Edmund Lau5218322520
Steven M. Kurtz522498066
Alfred J. Crosby512068310
Suresh H. Moolgavkar511698833
Michael T. Halpern5123716566
Network Information
Related Institutions (5)
University of Michigan
342.3K papers, 17.6M citations

79% related

University of California, Davis
180K papers, 8M citations

79% related

McGill University
162.5K papers, 6.9M citations

78% related

University of British Columbia
209.6K papers, 9.2M citations

78% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

78% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
20229
2021123
2020124
2019133
201888