scispace - formally typeset
Search or ask a question
JournalISSN: 1093-7404

Journal of Toxicology and Environmental Health-part B-critical Reviews 

Taylor & Francis
About: Journal of Toxicology and Environmental Health-part B-critical Reviews is an academic journal published by Taylor & Francis. The journal publishes majorly in the area(s): Environmental exposure & Population. It has an ISSN identifier of 1093-7404. Over the lifetime, 424 publications have been published receiving 35097 citations. The journal is also known as: Critical reviews & Journal of toxicology & environmental health. Part B, critical reviews.


Papers
More filters
Journal ArticleDOI
TL;DR: Implementation of a new toxicity testing paradigm firmly based on human biology by transitioning from current expensive and lengthy in vivo testing with qualitative endpoints to in vitro toxicity pathway assays on human cells or cell lines using robotic high-throughput screening with mechanistic quantitative parameters.
Abstract: With the release of the landmark report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences, in 2007, precipitated a major change in the way toxicity testing is conducted. It envisions increased efficiency in toxicity testing and decreased animal usage by transitioning from current expensive and lengthy in vivo testing with qualitative endpoints to in vitro toxicity pathway assays on human cells or cell lines using robotic high-throughput screening with mechanistic quantitative parameters. Risk assessment in the exposed human population would focus on avoiding significant perturbations in these toxicity pathways. Computational systems biology models would be implemented to determine the dose-response models of perturbations of pathway function. Extrapolation of in vitro results to in vivo human blood and tissue concentrations would be based on pharmacokinetic models for the given exposure condition. This practice would enhance human relevance of test results, and would cover several test agents, compared to traditional toxicological testing strategies. As all the tools that are necessary to implement the vision are currently available or in an advanced stage of development, the key prerequisites to achieving this paradigm shift are a commitment to change in the scientific community, which could be facilitated by a broad discussion of the vision, and obtaining necessary resources to enhance current knowledge of pathway perturbations and pathway assays in humans and to implement computational systems biology models. Implementation of these strategies would result in a new toxicity testing paradigm firmly based on human biology.

1,398 citations

Journal ArticleDOI
TL;DR: Critical areas for future DON research include molecular mechanisms underlying toxicity, sensitivity of human cells/tissues relative to other species, emetic effects in primates, epidemiological association with gastroenteritis and chronic disease in humans, and surveillance in cereal crops worldwide.
Abstract: Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereal-based foods worldwide. At the molecular level, DON disrupts normal cell function by inhibiting protein synthesis via binding to the ribosome and by activating critical cellular kinases involved in signal transduction related to proliferation, differentiation, and apoptosis. Relative to toxicity, there are marked species differences, with the pig being most sensitive to DON, followed by rodent > dog > cat > poultry > ruminants. The physiologic parameter that is most sensitive to low-level DON exposure is the emetic response, with as little as 0.05 to 0.1 mg/kg body weight (bw) inducing vomiting in swine and dogs. Chinese epidemiological studies suggest that DON may also produce emetic effects in humans. With respect to chronic effects, growth (anorexia and decreased nutritional efficiency), immune function, (enhancement and suppression), and reproduction (reduced litter size) are also adversely affected by DON in animals, whereas incidence of neoplasia is not affected. When hazard evaluations were conducted using existing chronic toxicity data and standard safety factors employed for anthropogenic additives/contaminants in foods, tolerable daily intakes (TDIs) ranging from 1 to 5 microg/kg bw have been generated. Given that critical data gaps still exist regarding the potential health effects of DON, additional research is needed to improve capacity for assessing adverse health effects of this mycotoxin. Critical areas for future DON research include molecular mechanisms underlying toxicity, sensitivity of human cells/tissues relative to other species, emetic effects in primates, epidemiological association with gastroenteritis and chronic disease in humans, and surveillance in cereal crops worldwide.

824 citations

Journal ArticleDOI
TL;DR: This article was originally published with an incorrect version of the Acknowledgments, which appeared on p. 218 of the print version.
Abstract: Note: This article was originally published with an incorrect version of the Acknowledgments, which appeared on p. 218 of the print version. The correct version of the Acknowledgments appeared on pp. 1–2. The corrected article is available below.

823 citations

Journal ArticleDOI
TL;DR: It is concluded that all OP anticholinesterases potentially have a mechanism of toxicity in common, that is, phosphorylation of AChE causing accumulation of acetylcholine, overstimulation of cholinergic receptors, and consequent clinical signs of Cholinergic toxicity.
Abstract: Organophosphorus (OP) pesticides are used extensively to control agricultural, household and structural pests. These pesticides constitute a diverse group of chemical structures exhibiting a wide range of physicochemical properties, with their primary toxicological action arising from inhibition of the enzyme acetylcholinesterase (AChE, EC 3.1.1.7). Historically, risk characterizations for these toxicants have been based on hazard and exposure data pertaining to individual chemicals. The Food Quality Protection Act of 1996 now requires, however, that combined risk assessments be performed with pesticides having a common mechanism of toxicity. It is therefore critical to consider whether OP pesticides all exert toxicity through a common mechanism. This brief review evaluates the comparative toxicity of the 38 OP AChE inhibitors currently registered for use as pesticides in the United States and examines the data which suggest that some OP pesticides have toxicologically relevant sites of action in addition...

622 citations

Journal ArticleDOI
TL;DR: An overview of the environmental patterns and dynamics of copper from the perspective of issues that affect the ability to examine current human exposures is provided, and the needs for better information are examined.
Abstract: This article provides an overview of the environmental patterns and dynamics of copper from the perspective of issues that affect our ability to examine current human exposures. It presents selected sum mary information on the levels of copper found in various media and exposure pathways from a variety of information sources, and discusses the breadth and the limitations of this information. The analysis presented focuses on the ability to provide quantitative values for both external metrics of exposures (microenvironmental levels) and internal biological markers of exposure. The status of the current information on environmental copper is placed within a conceptual framework that can be used to identify data gaps, assess the utility of current biological markers of exposure, and examine the need for systematic and consistent data-gathering studies to improve our ability to com plete exposure assessments. A primary concern is the exposure to copper through potable water supplies; this is considered withi...

553 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202313
202214
202113
202016
20199
201821