scispace - formally typeset
Search or ask a question
Institution

King's College London

EducationLondon, United Kingdom
About: King's College London is a education organization based out in London, United Kingdom. It is known for research contribution in the topics: Population & Mental health. The organization has 43107 authors who have published 113125 publications receiving 4498103 citations. The organization is also known as: King's & KCL.


Papers
More filters
Journal ArticleDOI
TL;DR: T cells, B cells and the orchestrated interaction of pro-inflammatory cytokines play key roles in the pathophysiology of RA, including production of acute-phase proteins (such as CRP), anaemia of chronic disease, cardiovascular disease and osteoporosis and affect the hypothalamic-pituitary-adrenal axis, resulting in fatigue and depression.
Abstract: RA is a progressive inflammatory autoimmune disease with articular and systemic effects. Its exact cause is unknown, but genetic and environmental factors are contributory. T cells, B cells and the orchestrated interaction of pro-inflammatory cytokines play key roles in the pathophysiology of RA. Differentiation of naive T cells into Th 17 (T(H)17) cells results in the production of IL-17, a potent cytokine that promotes synovitis. B cells further the pathogenic process through antigen presentation and autoantibody and cytokine production. Joint damage begins at the synovial membrane, where the influx and/or local activation of mononuclear cells and the formation of new blood vessels cause synovitis. Pannus, the osteoclast-rich portion of the synovial membrane, destroys bone, whereas enzymes secreted by synoviocytes and chondrocytes degrade cartilage. Antigen-activated CD4(+) T cells amplify the immune response by stimulating other mononuclear cells, synovial fibroblasts, chondrocytes and osteoclasts. The release of cytokines, especially TNF-α, IL-6 and IL-1, causes synovial inflammation. In addition to their articular effects, pro-inflammatory cytokines promote the development of systemic effects, including production of acute-phase proteins (such as CRP), anaemia of chronic disease, cardiovascular disease and osteoporosis and affect the hypothalamic-pituitary-adrenal axis, resulting in fatigue and depression.

688 citations

Journal ArticleDOI
TL;DR: The classical twin study is the most popular design in behavioural genetics and the flexibility of Mx allows the modelling of multivariate data to examine the genetic and environmental relations between two or more phenotypes and the modelling to categorical traits under liability-threshold models.
Abstract: The classical twin study is the most popular design in behavioural genetics. It has strong roots in biometrical genetic theory, which allows predictions to be made about the correlations between observed traits of identical and fraternal twins in terms of underlying genetic and environmental components. One can infer the relative importance of these 'latent' factors (model parameters) by structural equation modelling (SEM) of observed covariances of both twin types. SEM programs estimate model parameters by minimising a goodness-of-fit function between observed and predicted covariance matrices, usually by the maximum-likelihood criterion. Likelihood ratio statistics also allow the comparison of fit of different competing models. The program Mx, specifically developed to model genetically sensitive data, is now widely used in twin analyses. The flexibility of Mx allows the modelling of multivariate data to examine the genetic and environmental relations between two or more phenotypes and the modelling to categorical traits under liability-threshold models.

686 citations

Journal ArticleDOI
Sofia Khan1, Dario Greco2, Dario Greco1, Kyriaki Michailidou3  +158 moreInstitutions (54)
12 Nov 2014-PLOS ONE
TL;DR: Five miRNA binding site SNPs associated significantly with breast cancer risk are located in the 3′ UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively, which belongs to miRNA machinery genes and has a central role in initial miRNA processing.
Abstract: Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

686 citations

BookDOI
20 May 2003
TL;DR: In Vivo effects: anti-cancer properties of flavonoids, with emphasis on citrus flavonoid quercetin in foods, cardiovascular disease, and cancer absorption, metabolism, and bioavailability of Flavonoids flav onoids and coronary heart disease-dietary perspectives.
Abstract: Occurrence and analysis: analysis and identification of flavonoids in practice phenolic acids in fruits flavonoids in medical plants. Chemical and biochemical properties: chemistry of flavonoids antioxidant properties of flavonoids, reduction potentials, and electron transfer reactions of flavonoid radicals flavonoid and metal interactions in biological systems inhibition of mitochondrial function by flavonoids. Antioxidant activities: structure-antioxidant activity relationships of flavonoids and isoflavonoids structural aspects of antioxidant activity of flavonoids effects of flavonoids on the oxidation of low density lipoprotein flavonoids as inhibitors of lipid peroxidation in membranes isoflavonoids as inhibitors of lipid peroxidation and quenchers of singlet oxygen. Nutritional studies: ginkgo biloba extract EG6 761 - biological actions, antioxidant activity, and regulation of nitric oxide synthase nutritional studies of flavonoids in wine nutrition of grape phenolics flavonoids and phenylpropanoids as contributors to the antioxidant activity of fruit juices pycnogenol. In Vivo effects: anti-cancer properties of flavonoids, with emphasis on citrus flavonoids quercetin in foods, cardiovascular disease, and cancer absorption, metabolism, and bioavailability of flavonoids flavonoids and coronary heart disease-dietary perspectives.

686 citations


Authors

Showing all 43962 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
David Miller2032573204840
Rob Knight2011061253207
Mark I. McCarthy2001028187898
Michael Rutter188676151592
Eric Boerwinkle1831321170971
Terrie E. Moffitt182594150609
Kenneth S. Kendler1771327142251
John Hardy1771178171694
Dorret I. Boomsma1761507136353
Barry Halliwell173662159518
Feng Zhang1721278181865
Simon Baron-Cohen172773118071
Phillip A. Sharp172614117126
Yang Yang1712644153049
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

97% related

University of Oxford
258.1K papers, 12.9M citations

95% related

University of Cambridge
282.2K papers, 14.4M citations

95% related

Yale University
220.6K papers, 12.8M citations

93% related

University of Toronto
294.9K papers, 13.5M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023274
20221,271
202110,165
20209,250
20197,981