scispace - formally typeset
Search or ask a question
Institution

King's College London

EducationLondon, United Kingdom
About: King's College London is a education organization based out in London, United Kingdom. It is known for research contribution in the topics: Population & Mental health. The organization has 43107 authors who have published 113125 publications receiving 4498103 citations. The organization is also known as: King's & KCL.


Papers
More filters
Journal ArticleDOI
TL;DR: Increased BOLD signal was observed in left hemispheric dorsolateral prefrontal, medial, and parietal cortices during the go/no-go task, presumably reflecting a left frontoparietal specialization for response selection.

1,005 citations

Journal ArticleDOI
TL;DR: Glycogen synthase kinase 3 (GSK3) is a constitutively active, proline-directed serine/threonine kinase that plays a part in a number of physiological processes ranging from glycogen metabolism to gene transcription as discussed by the authors.
Abstract: Glycogen synthase kinase 3 (GSK3) is a constitutively active, proline-directed serine/threonine kinase that plays a part in a number of physiological processes ranging from glycogen metabolism to gene transcription. GSK3 also plays a pivotal and central role in the pathogenesis of both sporadic and familial forms of Alzheimer's disease (AD), an observation that has led us to coin the ‘GSK3 hypothesis of AD’. According to this hypothesis, over-activity of GSK3 accounts for memory impairment, tau hyper-phosphorylation, increased β-amyloid production and local plaque-associated microglial-mediated inflammatory responses; all of which are hallmark characteristics of AD. If our ‘GSK3 hypothesis of AD’ is substantiated and GSK3 is indeed a causal mediator of AD then inhibitors of GSK3 would provide a novel avenue for therapeutic intervention in this devastating disorder.

1,004 citations

Journal ArticleDOI
10 Jun 2010-Nature
TL;DR: Although improvements were observed in every one of the cognitive tasks that were trained, no evidence was found for transfer effects to untrained tasks, even when those tasks were cognitively closely related.
Abstract: ‘Brain training’, or the quest for improved cognitive function through the regular use of computerised tests, is a multimillion pound industry1, yet scientific evidence to support its efficacy is lacking. Modest effects have been reported in some studies of older individuals2,3 and preschool children4, and video gamers out perform non-gamers on some tests of visual attention5. However, the widely held belief that commercially available computerised brain trainers improve general cognitive function in the wider population lacks empirical support. The central question is not whether performance on cognitive tests can be improved by training, but rather, whether those benefits transfer to other untrained tasks or lead to any general improvement in the level of cognitive functioning. Here we report the results of a six-week online study in which 11,430 participants trained several times each week on cognitive tasks designed to improve reasoning, memory, planning, visuospatial skills and attention. Although improvements were observed in every one of the cognitive tasks that were trained, no evidence was found for transfer effects to untrained tasks, even when those tasks were cognitively closely related.

1,000 citations

Journal ArticleDOI
02 Mar 2001-Science
TL;DR: A complementary DNA, Dcytb (for duodenal cytochrome b), was isolated, which encoded a putative plasma membrane di-heme protein in mouse duodensal mucosa, and provides an important element in the iron absorption pathway.
Abstract: The ability of intestinal mucosa to absorb dietary ferric iron is attributed to the presence of a brush-border membrane reductase activity that displays adaptive responses to iron status. We have isolated a complementary DNA, Dcytb (for duodenal cytochrome b), which encoded a putative plasma membrane di-heme protein in mouse duodenal mucosa. Dcytb shared between 45 and 50% similarity to the cytochrome b561 family of plasma membrane reductases, was highly expressed in the brush-border membrane of duodenal enterocytes, and induced ferric reductase activity when expressed in Xenopus oocytes and cultured cells. Duodenal expression levels of Dcytb messenger RNA and protein were regulated by changes in physiological modulators of iron absorption. Thus, Dcytb provides an important element in the iron absorption pathway.

999 citations

Journal ArticleDOI
Klaus H. Maier-Hein1, Peter F. Neher1, Jean-Christophe Houde2, Marc-Alexandre Côté2, Eleftherios Garyfallidis2, Jidan Zhong3, Maxime Chamberland2, Fang-Cheng Yeh4, Ying-Chia Lin5, Qing Ji6, Wilburn E. Reddick6, John O. Glass6, David Qixiang Chen7, Yuanjing Feng8, Chengfeng Gao8, Ye Wu8, Jieyan Ma, H Renjie, Qiang Li, Carl-Fredrik Westin9, Samuel Deslauriers-Gauthier2, J. Omar Ocegueda Gonzalez, Michael Paquette2, Samuel St-Jean2, Gabriel Girard2, François Rheault2, Jasmeen Sidhu2, Chantal M. W. Tax10, Fenghua Guo10, Hamed Y. Mesri10, Szabolcs David10, Martijn Froeling10, Anneriet M. Heemskerk10, Alexander Leemans10, Arnaud Boré11, Basile Pinsard11, Christophe Bedetti11, Matthieu Desrosiers11, Simona M. Brambati11, Julien Doyon11, Alessia Sarica12, Roberta Vasta12, Antonio Cerasa12, Aldo Quattrone12, Jason D. Yeatman13, Ali R. Khan14, Wes Hodges, Simon Alexander, David Romascano15, Muhamed Barakovic15, Anna Auría15, Oscar Esteban16, Alia Lemkaddem15, Jean-Philippe Thiran15, Hasan Ertan Cetingul17, Benjamin L. Odry17, Boris Mailhe17, Mariappan S. Nadar17, Fabrizio Pizzagalli18, Gautam Prasad18, Julio E. Villalon-Reina18, Justin Galvis18, Paul M. Thompson18, Francisco De Santiago Requejo19, Pedro Luque Laguna19, Luis Miguel Lacerda19, Rachel Barrett19, Flavio Dell'Acqua19, Marco Catani, Laurent Petit20, Emmanuel Caruyer21, Alessandro Daducci15, Tim B. Dyrby22, Tim Holland-Letz1, Claus C. Hilgetag23, Bram Stieltjes24, Maxime Descoteaux2 
TL;DR: The encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent) is reported, however, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups.
Abstract: Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.

996 citations


Authors

Showing all 43962 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
David Miller2032573204840
Rob Knight2011061253207
Mark I. McCarthy2001028187898
Michael Rutter188676151592
Eric Boerwinkle1831321170971
Terrie E. Moffitt182594150609
Kenneth S. Kendler1771327142251
John Hardy1771178171694
Dorret I. Boomsma1761507136353
Barry Halliwell173662159518
Feng Zhang1721278181865
Simon Baron-Cohen172773118071
Phillip A. Sharp172614117126
Yang Yang1712644153049
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

97% related

University of Oxford
258.1K papers, 12.9M citations

95% related

University of Cambridge
282.2K papers, 14.4M citations

95% related

Yale University
220.6K papers, 12.8M citations

93% related

University of Toronto
294.9K papers, 13.5M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023274
20221,271
202110,165
20209,250
20197,981