scispace - formally typeset
Search or ask a question
Institution

Shenzhen University

EducationShenzhen, China
About: Shenzhen University is a education organization based out in Shenzhen, China. It is known for research contribution in the topics: Computer science & Laser. The organization has 28054 authors who have published 35378 publications receiving 522023 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The engineering of polyelectrolyte polymers coated BP quantum dots (BP-QDs)-based nanocarriers to deliver small interfering RNA (siRNA) into human ovarian teratocarcinoma PA-1 cells shows promising potential for siRNA delivery and photothermal effects in cancer therapy.
Abstract: As a novel semiconducting material, the inherent, direct, and appreciable band gap endows BP with preferable optical and electronic properties other than graphene and transition metal dichalcogenides. In addition, bio-related applications with equal importance also attract great attention thanks to several inherited advantages of BP including large drug loading capacity, high PDT efficiency, high biocompatibility and degradability. However, to date there is limited research about the biomedical applications of BP. In this study, we reported the engineering of polyelectrolyte polymers coated BP quantum dots (BP-QDs)-based nanocarriers to deliver small interfering RNA (siRNA) into human ovarian teratocarcinoma PA-1 cells. Compared to the commercial delivery reagents, superior transfection efficiency of BP-QD was detected. The expression of the LSD1 (lysine-specific demethylase 1) mRNA in PA-1 cells was significantly suppressed by BP-QDs-LSD1 siRNA complex. Notably, BP-QDs possess excellent biocompatibility and low cytotoxicity even at concentrations as high as 5 mg mL−1. The combination treatment of BP nanodots-LSD1 siRNA complex with NIR light could inhibit the cell growth rate by more than 80%. In conclusion, this is the first application of BP-QDs as gene delivery systems, which shows promising potential for siRNA delivery and photothermal effects in cancer therapy.

142 citations

Journal ArticleDOI
TL;DR: A deep learning-based method namely transferred bi-directional long short-term memory (TL-BLSTM) model for air quality prediction, which utilizes the bi- directional LSTM model to learn from the long-term dependencies of P M 2.5 and applies transfer learning to transfer the knowledge learned from smaller temporal resolutions to larger temporal resolutions.

142 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between the depth of concrete carbonation and CO 2 concentration was investigated through the scanning electron microscopy (SEM) observations, which showed that carbonation decreased the porosity of concrete by clogging up the pores and reducing the pore sizes.

142 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a fundamental restructuring of the lithium surface in the form of lithium silicide (Lix Si) can effectively eliminate the surface inhomogeneity on the lithiumsurface.
Abstract: The propensity of lithium dendrite formation during the charging process of lithium metal batteries is linked to inhomogeneity on the lithium surface layer. The high reactivity of lithium and the complex surface structure of the native layer create "hot spots" for fast dendritic growth. Here, it is demonstrated that a fundamental restructuring of the lithium surface in the form of lithium silicide (Lix Si) can effectively eliminate the surface inhomogeneity on the lithium surface. In situ optical microscopic study is carried out to monitor the electrochemical deposition of lithium on the Lix Si-modified lithium electrodes and the bare lithium electrode. It is observed that a much more uniform lithium dissolution/deposition on the Lix Si-modified lithium anode can be achieved as compared to the bare lithium electrode. Full cells paring the modified lithium anode with sulfur and LiFePO4 cathodes show excellent electrochemical performances in terms of rate capability and cycle stability. Compatibility of the anode enrichment method with mass production process also offers a practical way for enabling lithium metal anode for next-generation lithium batteries.

142 citations

Journal ArticleDOI
TL;DR: In this paper, size-dependent nonlinear saturable absorption and Kerr nonlinearity as well as ultrafast carrier dynamics of BPs are systematically studied by using a Z-scan and pump-probe technique.
Abstract: Multi-layer black phosphorus nanosheets (BPs) with different sizes are synthesized by using a basic solvent exfoliation method in association with controlled gradient centrifugation. Size-dependent nonlinear saturable absorption and Kerr nonlinearity as well as ultrafast carrier dynamics of BPs is systematically studied by using a Z-scan and pump–probe technique. Furthermore, an ultrashort pulse with a pulse duration of about 635 fs centered at a wavelength of 1562 nm is generated by using smaller sized BPs as a saturable absorber. These results directly reveal the physical processes of size-dependent nonlinear optical (NLO) properties of BPs and provide researchers with a viable approach in tailoring the NLO response of BPs through controlling the sizes, paving the way towards BP based electronics and optoelectronics applications such as ultrafast optical switches, modulators, fiber lasers, etc.

142 citations


Authors

Showing all 28394 results

NameH-indexPapersCitations
Yi Chen2174342293080
Hua Zhang1631503116769
Ben Zhong Tang1492007116294
Jun Lu135152699767
Peter T. Fox13162283369
Han Zhang13097058863
Andrey L. Rogach11757646820
Can Li116104960617
Huanming Yang115634123818
Thomas J. Kipps11474863240
Paras N. Prasad11497757249
Shihe Yang11367142906
Xiaoming Li113193272445
David Zhang111102755118
Wei Lu111197361911
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

95% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023202
2022650
20217,080
20206,363
20195,314
20183,877