scispace - formally typeset
Search or ask a question

Showing papers in "BMC Biophysics in 2013"


Journal ArticleDOI
TL;DR: Analysis of the contributions of absorption and scattering to the measured optical density provides a basis for understanding variability among spectrophotometers and enables a quantitative evaluation of the applicability of the Beer-Lambert law.
Abstract: Background: UV–vis spectrophotometric optical density (OD) is the most commonly-used technique for estimating chromophore formation and cell concentration in liquid culture. OD wavelength is often chosen with little thought given to its effect on the quality of the measurement. Analysis of the contributions of absorption and scattering to the measured optical density provides a basis for understanding variability among spectrophotometers and enables a quantitative evaluation of the applicability of the Beer-Lambert law. This provides a rational approach for improving the accuracy of OD measurements used as a proxy for direct dry weight (DW), cell count, and pigment levels. Results: For pigmented organisms, the choice of OD wavelength presents a tradeoff between the robustness and the sensitivity of the measurement. The OD at a robust wavelength is primarily the result of light scattering and does not vary with culture conditions; whereas, the OD at a sensitive wavelength is additionally dependent on light absorption by the organism’s pigments. Suitably robust and sensitive wavelengths are identified for a wide range of organisms by comparing their spectra to the true absorption spectra of dyes. The relative scattering contribution can be reduced either by measurement at higher OD, or by the addition of bovine serum albumin. Reduction of scattering or correlation with off-peak light attenuation provides for more accurate assessment of chromophore levels within cells. Conversion factors between DW, OD, and colony-forming unit density are tabulated for 17 diverse organisms to illustrate the scope of variability of these correlations. Finally, an inexpensive short pathlength LED-based flow cell is demonstrated for the online monitoring of growth in a bioreactor at culture concentrations greater than 5 grams dry weight per liter which would otherwise require off-line dilutions to obtain non-saturated OD measurements. Conclusions: OD is most accurate as a time-saving proxy measurement for biomass concentration when light attenuation is dominated by scattering. However, the applicability of OD-based correlations is highly dependent on the measurement specifications (spectrophotometer model and wavelength) and culture conditions (media type; growth stage; culture stress; cell/colony geometry; presence and concentration of secreted compounds). These variations highlight the importance of treating literature conversion factors as rough approximations as opposed to concrete constants. There is an opportunity to optimize measurements of cell pigment levels by considering scattering and absorption-dependent wavelengths of the OD spectrum.

258 citations


Journal ArticleDOI
TL;DR: Time-Resolved Force Distribution Analysis can be used, among others, in tracking signal propagation at atomic level, for characterizing dynamical intermolecular interactions, in development of force fields and for following stress distribution during conformational changes.
Abstract: Biomolecules or other complex macromolecules undergo conformational transitions upon exposure to an external perturbation such as ligand binding or mechanical force. To follow fluctuations in pairwise forces between atoms or residues during such conformational changes as observed in Molecular Dynamics (MD) simulations, we developed Time-Resolved Force Distribution Analysis (TRFDA). The implementation focuses on computational efficiency and low-memory usage and, along with the wide range of output options, makes possible time series analysis of pairwise forces variation in long MD simulations and for large molecular systems. It also provides an exact decomposition of pairwise forces resulting from 3- and 4-body potentials and a unified treatment of pairwise forces between atoms or residues. As a proof of concept, we present a stress analysis during unfolding of ubiquitin in a force-clamp MD simulation. TRFDA can be used, among others, in tracking signal propagation at atomic level, for characterizing dynamical intermolecular interactions (e.g. protein-ligand during flexible docking), in development of force fields and for following stress distribution during conformational changes.

59 citations


Journal ArticleDOI
TL;DR: Photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion ofMET dimers increases significantly upon ligand binding, indicating that partially preformed MET dimers may play a role in ligandbinding or MET signaling.
Abstract: The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases.

49 citations


Journal ArticleDOI
TL;DR: Given the significantly higher level of positively charged residues in r-proteins and at contact sites, it is concluded that ribosome assembly relies heavily on an electrostatic component of interaction that is insensitive to temperature and is not the determining factor differentiating the temperature sensitivity of ribosomes assembly.
Abstract: Assembly of the ribosome from its protein and RNA constituents must occur quickly and efficiently in order to synthesize the proteins necessary for all cellular activity. Since the early 1960’s, certain characteristics of possible assembly pathways have been elucidated, yet the mechanisms that govern the precise recognition events remain unclear. We utilize a comparative analysis to investigate the amino acid composition of ribosomal proteins (r-proteins) with respect to their role in the assembly process. We compared small subunit (30S) r-protein sequences to those of other housekeeping proteins from 560 bacterial species and searched for correlations between r-protein amino acid content and factors such as assembly binding order, environmental growth temperature, protein size, and contact with ribosomal RNA (rRNA) in the 30S complex. We find r-proteins have a significantly high percent of positive residues, which are highly represented at rRNA contact sites. An inverse correlation between the percent of positive residues and r-protein size was identified and is mainly due to the content of Lysine residues, rather than Arginine. Nearly all r-proteins carry a net positive charge, but no statistical correlation between the net charge and the binding order was detected. Thermophilic (high-temperature) r-proteins contain increased Arginine, Isoleucine, and Tyrosine, and decreased Serine and Threonine compared to mesophilic (lower-temperature), reflecting a known distinction between thermophiles and mesophiles, possibly to account for protein thermostability. However, this difference in amino acid content does not extend to rRNA contact sites, as the proportions of thermophilic and mesophilic contact residues are not significantly different. Given the significantly higher level of positively charged residues in r-proteins and at contact sites, we conclude that ribosome assembly relies heavily on an electrostatic component of interaction. However, the binding order of r-proteins in assembly does not appear to depend on these electrostatics interactions. Additionally, because thermophiles and mesophiles exhibit significantly different amino acid compositions in their sequences but not in the identities of contact sites, we conclude that this electrostatic component of interaction is insensitive to temperature and is not the determining factor differentiating the temperature sensitivity of ribosome assembly.

26 citations


Journal ArticleDOI
TL;DR: Micro and nanomechanical characterization assessed by force spectroscopy (FS) technique has been largely applied in this field of titanium dioxide fine particles and nanoparticles applications.
Abstract: Background Increasing applications of titanium dioxide (TiO2) fine particles (FPs) and nanoparticles (NPs) require coupled knowledge improvement concerning their biokinetic effects. Neutrophils are quickly recruited to titanium implantation areas. Neutrophils mechanical properties display a crucial role on cell physiology and immune responsive functions. Then, micro and nanomechanical characterization assessed by force spectroscopy (FS) technique has been largely applied in this field.

23 citations


Journal ArticleDOI
TL;DR: The results of this study provide a general guideline for microarray assay development for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different surfaces in dependence of the applied spotting and reaction volume.
Abstract: Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different surfaces in dependence of the applied spotting and reaction volume.

22 citations


Journal ArticleDOI
TL;DR: This study explored how the properties of chromatin as a polymer may contribute to the structure of transcription factories and found that transcriptional active chromatincontains modifications like histone H4 acetylated at Lysine 16 (H4K16ac).
Abstract: Transcription factories are nuclear domains where gene transcription takes placealthough the molecular basis for their formation and maintenance are unknown. In thisstudy, we explored how the properties of chromatin as a polymer may contribute to thestructure of transcription factories. We found that transcriptional active chromatincontains modifications like histone H4 acetylated at Lysine 16 (H4K16ac). Singlefibre analysis showed that this modification spans the entire body of the gene.Furthermore, H4K16ac genes cluster in regions up to 500 Kb alternating active andinactive chromatin. The introduction of H4K16ac in chromatin induces stiffness in thechromatin fibre. The result of this change in flexibility is that chromatin couldbehave like a multi-block copolymer with repetitions of stiff-flexible(active-inactive chromatin) components. Copolymers with such structure self-organizethrough spontaneous phase separation into microdomains. Consistent with such modelH4K16ac chromatin form foci that associates with nascent transcripts. We propose thattranscription factories are the result of the spontaneous concentration of H4K16acchromatin that are in proximity, mainly in cis.

20 citations


Journal ArticleDOI
TL;DR: The ATP effect on protein aggregation was ambiguous: ATP alone had no effect on the protein’s thermal stability but it facilitated protein‘s destabilization in the presence of nitric oxide.
Abstract: Background and objective Regulating protein function in the cell by small molecules, provide a rapid, reversible and tunable tool of metabolic control. However, due to its complexity the issue is poorly studied so far. The effects of small solutes on protein behavior can be studied by examining changes of protein secondary structure, in its hydrodynamic radius as well as its thermal aggregation. The study aim was to investigate effects of adenosine-5’-triphosphate (ATP), spermine NONOate (NO donor) as well as sodium/potassium ions on thermal aggregation of albumin and hemoglobin. To follow aggregation of the proteins, their diffusion coefficients were measured by quasi-elastic light scattering (QELS) at constant pH (7.4) in the presence of solutes over a temperature range from 25°C to 80°C.

18 citations


Journal ArticleDOI
TL;DR: The induced-fit mechanism revealed by the MD simulation study will aid the inclusion of protein dynamics for the discovery and design of LSD1 inhibitors targeting the H3-histone binding region and indicates the importance of using multiple metrics or selection schemes when testing alternative hypothetical mechanistic models of non-covalent binding.
Abstract: Background Lysine Specific Demethylase (LSD1 or KDM1A) in complex with its co-repressor protein CoREST catalyzes the demethylation of the H3 histone N-terminal tail and is currently one of the most promising epigenetic targets for drug discovery against cancer and neurodegenerative diseases. Models of non-covalent binding, such as lock and key, induced-fit, and conformational selection could help explaining the molecular mechanism of LSD1/CoREST-H3-histone association, thus guiding drug discovery and design efforts. Here, we quantify the extent to which LSD1/CoREST substrate binding is consistent with these hypothetical models using LSD1/CoREST conformational ensembles obtained through extensive explicit solvent molecular dynamics (MD) simulations.

17 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed a model for the interactions between keratin intermediate filaments based on self-consistent field theory, and found that the relationship between the disordered terminal domains and the inter-filament medium is controlled by a combination of the physico-chemical properties of disordered terminals and the composition of the medium.
Abstract: Keratins are important structural proteins found in skin, hair and nails Keratin Intermediate Filaments are major components of corneocytes, nonviable horny cells of the Stratum Corneum, the outermost layer of skin It is considered that interactions between unstructured domains of Keratin Intermediate Filaments are the key factor in maintaining the elasticity of the skin We have developed a model for the interactions between keratin intermediate filaments based on self-consistent field theory The intermediate filaments are represented by charged surfaces, and the disordered terminal domains of the keratins are represented by charged heteropolymers grafted to these surfaces We estimate the system is close to a charge compensation point where the heteropolymer grafting density is matched to the surface charge density Using a protein model with amino acid resolution for the terminal domains, we find that the terminal chains can mediate a weak attraction between the keratin surfaces The origin of the attraction is a combination of bridging and electrostatics The attraction disappears when the system moves away from the charge compensation point, or when excess small ions and/or NMF-representing free amino acids are added These results are in concordance with experimental observations, and support the idea that the interaction between keratin filaments, and ultimately in part the elastic properties of the keratin-containing tissue, is controlled by a combination of the physico-chemical properties of the disordered terminal domains and the composition of the medium in the inter-filament region

12 citations


Journal ArticleDOI
TL;DR: In this paper, a semi-analytical methodology that determines the probability distribution function of motor-protein behavior in an exact manner is developed, which utilizes a finite-dimensional projection of the underlying infinite-dimensional Markov model, which retains the Markov property, and enables the detailed and exact determination of motor configurations, from which meaningful inferences on transport characteristics can be derived.
Abstract: Background: Intracellular transport is crucial for many cellular processes where a large fraction of the cargo is transferred by motor-proteins over a network of microtubules. Malfunctions in the transport mechanism underlie a number of medical maladies. Existing methods for studying how motor-proteins coordinate the transfer of a shared cargo over a microtubule are either analytical or are based on Monte-Carlo simulations. Approaches that yield analytical results, while providing unique insights into transport mechanism, make simplifying assumptions, where a detailed characterization of important transport modalities is difficult to reach. On the other hand, Monte-Carlo based simulations can incorporate detailed characteristics of the transport mechanism; however, the quality of the results depend on the number and quality of simulation runs used in arriving at results. Here, for example, it is difficult to simulate and study rare-events that can trigger abnormalities in transport. Results: In this article, a semi-analytical methodology that determines the probability distribution function of motor-protein behavior in an exact manner is developed. The method utilizes a finite-dimensional projection of the underlying infinite-dimensional Markov model, which retains the Markov property, and enables the detailed and exact determination of motor configurations, from which meaningful inferences on transport characteristics of the original model can be derived. Conclusions: Under this novel probabilistic approach new insights about the mechanisms of action of these proteins are found, suggesting hypothesis about their behavior and driving the design and realization of new experiments. The advantages provided in accuracy and efficiency make it possible to detect rare events in the motor protein dynamics, that could otherwise pass undetected using standard simulation methods. In this respect, the model has allowed to provide a possible explanation for possible mechanisms under which motor proteins could coordinate their motion.

Journal ArticleDOI
TL;DR: Enzyme kinetics and SPR experiments hint at a ping-pong mechanism for PqsD with ACoA as first substrate, with two binding modes for β-ketodecanoic acid with distinct catalytic mechanism preferences.
Abstract: PQS (Pseudomonas Quinolone Signal) and its precursor HHQ are signal molecules of the P. aeruginosa quorum sensing system. They explicate their role in mammalian pathogenicity by binding to the receptor PqsR that induces virulence factor production and biofilm formation. The enzyme PqsD catalyses the biosynthesis of HHQ. Enzyme kinetic analysis and surface plasmon resonance (SPR) biosensor experiments were used to determine mechanism and substrate order of the biosynthesis. Comparative analysis led to the identification of domains involved in functionality of PqsD. A kinetic cycle was set up and molecular dynamics (MD) simulations were used to study the molecular bases of the kinetics of PqsD. Trajectory analysis, pocket volume measurements, binding energy estimations and decompositions ensured insights into the binding mode of the substrates anthraniloyl-CoA and β-ketodecanoic acid. Enzyme kinetics and SPR experiments hint at a ping-pong mechanism for PqsD with ACoA as first substrate. Trajectory analysis of different PqsD complexes evidenced ligand-dependent induced-fit motions affecting the modified ACoA funnel access to the exposure of a secondary channel. A tunnel-network is formed in which Ser317 plays an important role by binding to both substrates. Mutagenesis experiments resulting in the inactive S317F mutant confirmed the importance of this residue. Two binding modes for β-ketodecanoic acid were identified with distinct catalytic mechanism preferences.

Journal ArticleDOI
TL;DR: An algorithm based on constructing the input as a superposition of wavelets and optimizing it according to a selected cost functional is applied to ion channel electrophysiology where the input is the fluctuating voltage delivered through a patch-clamp experimental apparatus and the output is the whole-cell ionic current.
Abstract: Fluctuation-induced phenomena caused by both random and deterministic stimuli have been previously studied in a variety of contexts. They are based on the interplay between the spectro-temporal patterns of the signal and the kinetics of the system it is applied to. The aim of this study was to develop a method for designing fluctuating inputs into nonlinear system which would elicit the most desired system output and to implement the method to studies of ion channels. We describe an algorithm based on constructing the input as a superposition of wavelets and optimizing it according to a selected cost functional. The algorithm is applied to ion channel electrophysiology where the input is the fluctuating voltage delivered through a patch-clamp experimental apparatus and the output is the whole-cell ionic current. The algorithm is optimized to aid selection of Markov models of the gating kinetics of the voltage-gated Shaker K+ channel and tested by comparison of numerically obtained ionic currents predicted by different models with experimental data obtained from the Shaker K+ channels. Other applications and optimization criteria are also suggested. The method described in this paper can be useful in development and testing of models of ion channel gating kinetics, developing voltage inputs that optimize certain nonequilibrium phenomena in ion channels, such as the kinetic focusing, and potentially has applications to other fields.

Journal ArticleDOI
TL;DR: A recent study by Dietz et al. using single-molecule fluorescence microscopy techniques demonstrates that, in the absence of the ligand InlB, the MET receptor exists as both a monomer and a dimer on the cell membrane, and addition of theligand leads to increased MET dimerization.
Abstract: A recent study by Dietz et al. using single-molecule fluorescence microscopy techniques demonstrates that, in the absence of the ligand InlB, the MET receptor exists as both a monomer and a dimer on the cell membrane, and addition of the ligand leads to increased MET dimerization. Under the crowded conditions of the cell membrane, dimer formation may be a common phenomenon for cell surface receptors. Ligand binding to both monomeric and dimeric receptors may provide parallel routes to receptor activation.

Journal ArticleDOI
TL;DR: Two of the most intensively studied amphiphiles, tryptophan and arbutin, along with their isolated hydrophilic moieties glycine and glucose, are used to better understand structure-function relationships in amphiphile-membrane interactions in the dry state.
Abstract: Background Water is essential for life, but some organisms can survive complete desiccation, while many more survive partial dehydration during drying or freezing. The function of some protective molecules, such as sugars, has been extensively studied, but much less is known about the effects of amphiphiles such as flavonoids and other aromatic compounds. Amphiphiles may be largely soluble under fully hydrated conditions, but will partition into membranes upon removal of water. Little is known about the effects of amphiphiles on membrane stability and how amphiphile structure and function are related. Here, we have used two of the most intensively studied amphiphiles, tryptophan (Trp) and arbutin (Arb), along with their isolated hydrophilic moieties glycine (Gly) and glucose (Glc) to better understand structure-function relationships in amphiphile-membrane interactions in the dry state.