scispace - formally typeset
Search or ask a question

Showing papers in "Earth Moon and Planets in 2014"


Journal ArticleDOI
TL;DR: In this article, the authors used thermal radiometry and visible photometry to constrain the size, shape, and albedo of the large Kuiper belt object Haumea.
Abstract: We use thermal radiometry and visible photometry to constrain the size, shape, and albedo of the large Kuiper belt object Haumea. The correlation between the visible and thermal photometry demonstrates that Haumea’s high amplitude and quickly varying optical light curve is indeed due to Haumea’s extreme shape, rather than large scale albedo variations. However, the well-sampled high precision visible data we present does require longitudinal surface heterogeneity to account for the shape of lightcurve. The thermal emission from Haumea is consistent with the expected Jacobi ellipsoid shape of a rapidly rotating body in hydrostatic equilibrium. The best Jacobi ellipsoid fit to the visible photometry implies a triaxial ellipsoid with axes of length 1,920 × 1,540 × 990 km and density 2.6 g cm ^(−3) , as found by Lellouch et al. (A&A, 518:L147, 2010. doi:10.1051/0004-6361/201014648). While the thermal and visible data cannot uniquely constrain the full non-spherical shape of Haumea, the match between the predicted and measured thermal flux for a dense Jacobi ellipsoid suggests that Haumea is indeed one of the densest objects in the Kuiper belt.

40 citations


Journal ArticleDOI
TL;DR: In this paper, the ages of 191 discrete lunar regolith samples from the Apollo, Luna, and meteorite collections are determined using the trapped 40Ar and 36Ar abundances of each sample, determined from published Ar data.
Abstract: This study determines the ages of 191 discrete lunar regolith samples from the Apollo, Luna, and meteorite collections. Model closure ages (for lithified breccias) and appearance ages (for unconsolidated soils) are calculated using the trapped 40Ar and 36Ar abundances of each sample, determined from published Ar data. Model closure ages of regolith breccias span ~3.9 to 0.01 Ga and appearance ages of soils range from ~3.6 to 0.03 Ga; 169 of these ages are published here for the first time, while 22 are recalculated ages. The regolith breccias with the oldest closure ages originate from the ancient highlands and oldest mare surfaces sampled by the Apollo missions. Soils generally have similar ages to each other, regardless of location and collection depth, with most model ages <2.0 Ga. Together, the soils and regolith breccias represent a record of regolith processes over the past 3.9 Ga. The data illustrate that individual landing sites can provide a diversity of ages, which has implications for planning future missions. Differences in maturity between older and younger regolith samples may reflect a change in collisional regimes over time. We note, too, that the closure ages published here are critical data needed for selecting temporally appropriate regolith samples used to decipher the diversity of impactors hitting the lunar surface over time and how the Sun has changed in time.

29 citations


Journal ArticleDOI
TL;DR: A new 2013 version of the IAU MDC photographic meteor orbits database which is an upgrade of the current 2003 version (Lindblad et al. 2003, EMP 93:249–260) is presented.
Abstract: A new 2013 version of the IAU MDC photographic meteor orbits database which is an upgrade of the current 2003 version (Lindblad et al. 2003, EMP 93:249–260) is presented. To the 2003 version additional 292 orbits are added, thus the new version of the database consists of 4,873 meteors with their geophysical and orbital parameters compiled in 41 catalogues. For storing the data, a new format enabling a more simple treatment with the parameters, including the errors of their determination is applied. The data can be downloaded from the IAU MDC web site: http://www.astro.sk/IAUMDC/Ph2013/

25 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed spectra, trajectories, orbits, light curves, and decelerations of eight Draconid meteors observed from Northern Italy on October 8, 2011.
Abstract: We analyzed spectra, trajectories, orbits, light curves, and decelerations of eight Draconid meteors observed from Northern Italy on October 8, 2011. Meteor morphologies of two of the meteors are also presented, one of them obtained with a high resolution camera. Meteor radiants agree with theoretical predictions, with a hint that some meteors may belong to the pre-1900 meteoroid trails. The spectra confirm that Draconids have normal chondritic composition of main elements (Mg, Fe, Na). There are, nevertheless, differences in the temporal evolution of Na line emission. The differences are correlated with the shapes of the light curves and the deceleration rates. Our data confirm that Draconids are porous conglomerates of grains, nevertheless, significant differences in the atmospheric fragmentation of cm-sized Draconids were found. Various textures with various resistance to fragmentation exist among Draconid meteoroids and even within single meteoroids.

22 citations


Journal ArticleDOI
TL;DR: In this article, a Draconid meteor shower outburst was observed from on board two scientific aircraft deployed above Northern Europe on 8th October 2011 using a set of photographic and video cameras.
Abstract: A Draconid meteor shower outburst was observed from on board two scientific aircraft deployed above Northern Europe on 8th October 2011. The activity profile was measured using a set of photographic and video cameras. The main peak of the activity occurred around 20:15 ± 0:0.5 UT which is consistent with the model prediction as well as with the IMO network visual observations. The corrected hourly rates reached a value of almost 350. The brighter meteors peaked about 15–20 min earlier than the dimmer ones. This difference can be explained by different directions of the ejection of the meteoroids from the parent comet. One of the instruments was even able to detect meteors connected with the material ejected from the parent comet before 1900 and thus confirmed the prediction of the model, although it was based on uncertain pre-1900 cometary data. Another small peak of the activity, which was caused by material ejected during the 1926 perihelion passage of the parent comet, was detected around 21:10 UT. The mass distribution index determined using the narrow field-of-view video camera was 2.0 ± 0.1. This work shows that the observation of meteor outbursts can constrain the orbital elements, outgassing activity and existence of jets at the surface of a comet.

15 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Video Meteor Network of the International Meteor Organization (IMO) for the first time, fully automated flux density measurements in the optical domain during the 2011 Draconid meteor shower.
Abstract: During the 2011 outburst of the Draconid meteor shower, members of the Video Meteor Network of the International Meteor Organization provided, for the first time, fully automated flux density measurements in the optical domain. The data set revealed a primary maximum at 20:09 UT ± 5 min on 8 October 2011 (195.036° solar longitude) with an equivalent meteoroid flux density of (118 ± 10) × 10−3/km2/h at a meteor limiting magnitude of +6.5, which is thought to be caused by the 1900 dust trail. We also find that the outburst had a full width at half maximum of 80 min, a mean radiant position of α = 262.2°, δ = +56.2° (±1.3°) and geocentric velocity of vgeo = 17.4 km/s (±0.5 km/s). Finally, our data set appears to be consistent with a small sub-maximum at 19:34 UT ±7 min (195.036° solar longitude) which has earlier been reported by radio observations and may be attributed to the 1907 dust trail. We plan to implement automated real-time flux density measurements for all known meteor showers on a regular basis soon.

15 citations


Journal ArticleDOI
TL;DR: In this paper, an airborne observing campaign was organized, with several teams contributing imaging and spectrographic cameras to study the manner in which these meteoroids released the volatile element sodium during the ablation process in the Earth's atmosphere.
Abstract: Some past October Draconid shower meteoroids fell apart in a spray of fragments at the end of their trajectory before slowing down, from which it was concluded that these were among the most fragile meteoroids known. In those instances, the dust could not be reliably traced to a particular return of the parent comet 21P/Giaconini-Zinner. On October 8th, 2011, Earth was predicted to transverse the 1900 A.D. dust ejecta of the comet. In 1900, the comet’s perihelion distance first moved significantly inwards to the Sun and ejection conditions could have been unusual. An airborne observing campaign was organized, with several teams contributing imaging and spectrographic cameras to study the manner in which these meteoroids released the volatile element sodium during the ablation process in the Earth’s atmosphere. IMCCE, ESA, and the SETI Institute contributed spectrographic cameras based on low-light WATEC 902H2 Ultimate, low-light LCC1, and GenII XX1332 image intensified cameras. An outburst was observed, much as predicted. Despite a lack of bright meteors, a total of 15 Draconid spectra were recorded. All show evidence of an early release of sodium. The loss of sodium was observed to coincide with the formation of a distinct wake of fragments. The observations show that 21P/Giacobini-Zinner ejected fragile meteoroids during the return in 1900. Those grains may have lost some sodium even before impacting Earth.

12 citations


Journal ArticleDOI
TL;DR: In this paper, a general shape model, named the cellinoid, instead of the ellipsoid model, was used to simulate the asymmetric shape of asteroids, and the brightness of asteroids observed from the Earth can be fitted numerically by the surface triangularization of the cell-inoid.
Abstract: The ellipsoid shape model plays an important role in physical research on asteroids. However, its symmetric structure cannot practically simulate real asteroids. This article applies a general shape model, named the cellinoid, instead of the ellipsoid model to simulate the asymmetric shape of asteroids. The cellinoid shape model consists of eight octants of ellipsoids having different semi-axes, with the constraint that adjacent octants must have two equal semi-axes in common. Totally, the shape of the cellinoid model is controlled by six parameters, not three as in the case of the shape of the ellipsoid. Using this shape model, the brightness of asteroids observed from the Earth can be fitted numerically by the surface triangularization of the cellinoid. The Levenberg-Marquardt algorithm is also employed here to solve a nonlinear minimization problem. Owing to the asymmetric shape of the cellinoid, the physical parameters of asteroids, such as the rotation period and pole orientation, can be fitted more accurately than in the case of the ellipsoid model. Finally, this is confirmed numerically by applying the shape to both synthetic light curves and real light curves of asteroids. Additionally, the center of mass and moment of inertia of the cellinoid are analyzed explicitly.

11 citations


Journal ArticleDOI
TL;DR: In this paper, the predicted Draconid meteor shower outburst during October 2011 had been observed by a portion of the Croatian Meteor Network whose stations encountered clear weather, and two methods of trajectory estimation were applied, showing better fit results using a linearly changing velocity model versus a constant velocity model.
Abstract: The predicted Draconid meteor shower outburst during October 2011 had been observed by a portion of the Croatian Meteor Network whose stations encountered clear weather. A total of 95 Draconid orbits have been calculated from 18 contributing stations, and in this paper we present results for 63 orbits obtained from the fully automatic observation and processing pipeline. Two methods of trajectory estimation were applied, showing better fit results using a linearly changing velocity model versus a constant velocity model. The estimated mean radiant position has been found to be at RA = 262.6°, Dec = +55.7°, with estimated geocentric velocity Vg = 20.7 km/s.

10 citations


Journal ArticleDOI
TL;DR: In this article, photometric measurements of 33 transneptunian objects and Centaurs from the target list of the Herschel Key program ‘TNOs are cool’ are presented.
Abstract: Photometric measurements of 33 transneptunian objects (TNOs) and Centaurs from the target list of the Herschel Key program ‘TNOs are cool’ are presented. Broadband filter observations of 5 Plutinos, 14 classical disk objects (CDOs), 5 scattered disk objects (SDOs), 5 detached disk objects (DDOs) and 4 Centaurs are used to determine absolute magnitudes, broadband colours and spectral gradients in the visible wavelength range. The diameters of the objects estimated with assumed average albedo values fall in the typical range for the various dynamical populations. Deviations between our and published measurements of the photometric brightnesses for three objects indicate larger lightcurve amplitudes (0.4–0.8 mag) due to non-spherical shape and/or albedo. A statistical analysis of photometric population properties using our data and those of the MBOSS2 database by Hainaut et al. (A&A 546:A115, 2012) supports the results and conclusion of this group of authors, namely it shows that dynamically cold CDOs are disjunct for their visible colours from the other TNO populations and Centaurs. Six objects (2002 GV31, 2003 AZ84, 2003 MW12, 2003 OP32, 2003 UZ117, 2005 RM43) with neutral to bluish spectral gradients were found, of which 2002 GV31 shows the smallest spectral slope among the dynamically cold CDOs known so far. Three very red objects (2002 KY14, 2004 GV9, 2007 OR10) with spectral gradients above 40 %/100 nm were found of which 2007 OR10 is by far the reddest DDO measured so far.

9 citations


Journal ArticleDOI
TL;DR: In this article, the authors derived the full three-body Hill stability for a binary system with the binary composed of the planet and moon moving on an inclined, elliptical orbit relative the central star.
Abstract: Limits are placed on the range of orbits and masses of possible moons orbiting extrasolar planets which orbit single central stars. The Roche limiting radius determines how close the moon can approach the planet before tidal disruption occurs; while the Hill stability of the star–planet–moon system determines stable orbits of the moon around the planet. Here the full three-body Hill stability is derived for a system with the binary composed of the planet and moon moving on an inclined, elliptical orbit relative the central star. The approximation derived here in Eq. (17) assumes the binary mass is very small compared with the mass of the star and has not previously been applied to this problem and gives the criterion against disruption and component exchange in a closed form. This criterion was applied to transiting extrasolar planetary systems discovered since the last estimation of the critical separations (Donnison in Mon Not R Astron Soc 406:1918, 2010a) for a variety of planet/moon ratios including binary planets, with the moon moving on a circular orbit. The effects of eccentricity and inclination of the binary on the stability of the orbit of a moon is discussed and applied to the transiting extrasolar planets, assuming the same planet/moon ratios but with the moon moving with a variety of eccentricities and inclinations. For the non-zero values of the eccentricity of the moon, the critical separation distance decreased as the eccentricity increased in value. Similarly the critical separation decreased as the inclination increased. In both cases the changes though very small were significant.

Journal ArticleDOI
TL;DR: In this paper, the authors extended the results of the Earth and Mars trajectories to the principal moons of the Solar System and their principal moons. But the results for the planets Mars and Jupiter and for the moons Europa, Callisto and Titan are not verified in the solar system and so analytical techniques must be replaced by numerical simulations.
Abstract: Performances of a planetary observation system are strongly related to the choice of the orbit used. Trajectories with characteristics of periodicity are very useful for the assessment of time-varying phenomena and thus Periodic SunSynchronous and Periodic Multi-SunSynchronous Orbits are particularly suitable to this end. In this paper, the research into these kinds of orbits, previously proposed for the Earth and Mars, has been extended to planets of the Solar System and to their principal moons. In general, these trajectories are typically obtained under the hypothesis that the J2 harmonic is predominant with respect to the other orbital perturbations, since this allows an analytical solution. However, the hypothesis of J2 predominant is not always verified in the Solar System and so analytical techniques must be replaced by numerical simulations. Interesting results have been obtained for the planets Mars and Jupiter and for the moons Europa, Callisto and Titan, where periodic trajectories with reduced revisit times and low altitudes have been found. These solutions allow the observation of time-varying phenomena with high spatial and temporal resolution.

Journal ArticleDOI
TL;DR: In this paper, the initial results of a targeted effort of the ESA NEO Coordination Centre to obtain additional observational data in order to eliminate or reduce the impact probability estimate of a subset of the known near-Earth objects representing the highest fraction of the total known impact risk, as measured by the Palermo Scale.
Abstract: In this work we summarize the initial results of a targeted effort of the ESA NEO Coordination Centre to obtain additional observational data in order to eliminate or reduce the impact probability estimate of a subset of the known near-Earth objects representing the highest fraction of the total known impact risk, as measured by the Palermo Scale.

Journal ArticleDOI
TL;DR: The proposed method for lunar crescent detection significantly reduces artifacts, increases SNR and can be used easily by both groups astronomers and who want to develop a new criterion as a reliable method to verify empirical observation.
Abstract: For many years lunar crescent visibility has been studied by many astronomers. Different criteria have been used to predict and evaluate the visibility status of new Moon crescents. Powerful equipment such as telescopes and binoculars have changed capability of observations. Most of conventional statistical criteria made wrong predictions when new observations (based on modern equipment) were reported. In order to verify such reports and modify criteria, not only previous statistical parameters should be considered but also some new and effective parameters like high magnification, contour effect, low signal to noise, eyestrain and weather conditions should be viewed. In this paper a new method is presented for lunar crescent detection based on processing of lunar crescent images. The method includes two main steps, first, an image processing algorithm that improves signal to noise ratio and detects lunar crescents based on circular Hough transform (CHT). Second using an algorithm based on image histogram processing to detect the crescent visually. Final decision is made by comparing the results of visual and CHT algorithms. In order to evaluate the proposed method, a database, including 31 images are tested. The illustrated method can distinguish and extract the crescent that even the eye can’t recognize. Proposed method significantly reduces artifacts, increases SNR and can be used easily by both groups astronomers and who want to develop a new criterion as a reliable method to verify empirical observation.

Journal ArticleDOI
TL;DR: In this paper, the authors presented observations of plasma blobs by nightglow OI 630.0 nm emissions using ground-based techniques, all sky imager and photometer from Kolhapur.
Abstract: This paper presents observations of plasma blobs by nightglow OI 630.0 nm emissions using ground-based techniques, all sky imager and photometer from Kolhapur. The nightglow observations have been made at low latitude station, Kolhapur (16.42°N, 74.2°E, and 10.6°N dip lat.) during clear moonless nights for period of October 2011–April 2012. Generally, these occur 3 h after sunset (18:00 IST). Herein we have calculated velocities of plasma blobs using scanning method, introduced by Pimenta et al. (Adv Space Res 27:1219–1224, 2001). The average zonal drift velocity (eastward) of the plasma blobs were found to be 133 ms−1 and vary between 100 and 200 ms−1. The width (east–west expansion) and length (north–south expansion) of plasma blobs is calculated by recently developed method of Sharma et al. (Curr Sci 106(08):1085–1093, 2014b). Their mean width and length were in the range of 70–180 and 500–950 km respectively. The study shows that localized eastward polarization electric field plays an important role in the generation of plasma blobs.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of the angle between the density gradient and the external magnetic field on the efficiency of the linear mode conversion and the resultant beaming angle of converted LO-mode waves.
Abstract: Recent spacecraft’s observations of kilometric continuum radiation showed that the linear mode conversion theory (LMCT) cannot explain the beaming angle of these observations; on the other hand satellite observations show some local fluctuation in the density gradient. In this research, we consider the mode conversion process from UHR-mode (slow Z- mode) to LO-mode (ordinary) waves, focusing on the effect of the angle between the density gradient and the external magnetic field on the efficiency of the LMCT and the resultant beaming angle of converted LO-mode waves; a comparison of the LMCT and simulation results are presented. We first consider a condition that the density gradient is perpendicular to the external magnetic field, corresponding to the condition assumed in the conventional LMCT. Next, we extend the discussion to the condition that the density gradient is oblique to the external magnetic field. Our aim here is to investigate a condition where the efficient mode conversion can occur and to study the deviation of the beaming angle from that estimated by LMCT. From the results of analyses, for both perpendicular and oblique cases, the highest conversion efficiency is obtained for a certain value of the wave normal angle (critical wave normal angle) of the incident slow Z-mode waves, corresponding to the case when two mode branches are matched. The simulation results show in the perpendicular case that the beaming angle is consistent with the conventional LMCT; but in the oblique case a critical wave normal angle becomes different from the perpendicular case and the beaming angle is different from the LMCT prediction.

Journal ArticleDOI
TL;DR: Misra et al. as mentioned in this paper presented the microprobe data on major oxides and a few trace elements (e.g. Cr, Ni, Cu, Zn) of mm-sized impact spherules in unravelling their petrogenetic evolution.
Abstract: The ~50 or 570 ka old Lonar crater, India, was excavated in the Deccan Trap flood basalt of Cretaceous age by the impact of a chondritic asteroid. The impact-spherules known from within the ejecta around this crater are of three types namely aerodynamically shaped sub-mm and mm size spherules, and a sub-mm sized variety of spherule, described as mantled lapilli, having a core consisting of ash-sized grains, shocked basalt and solidified melts surrounded by a rim of ash-sized materials. Although, information is now available on the bulk composition of the sub-mm sized spherules (Misra et al. in Meteorit Planet Sci 7:1001–1018, 2009), almost no idea exists on the latter two varieties. Here, we presented the microprobe data on major oxides and a few trace elements (e.g. Cr, Ni, Cu, Zn) of mm-sized impact spherules in unravelling their petrogenetic evolution. The mm-sized spherules are characterised by homogeneous glassy interior with vesicular margin in contrast to an overall smooth and glassy-texture of the sub-mm sized spherules. Undigested micro-xenocrysts of mainly plagioclase, magnetite and rare clinopyroxene of the target basalt are present only at the marginal parts of the mm-sized spherules. The minor relative enrichment of SiO2 (~3.5 wt% in average) and absence of schlieren structure in these spherules suggest relatively high viscosity of the parent melt droplets of these spherules in comparison to their sub-mm sized counterpart. Chemically homogeneous mm-sized spherule and impact-melt bomb share similar bulk chemical and trace element compositions and show no enrichment in impactor components. The general depletion of Na2O within all the Lonar impactites was resulted due to impact-induced volatilisation effect, and it indicates the solidification temperature of the Lonar impactites close to 1,100 °C. The systematic geochemical variation within the mm-sized spherules (Mg# ~0.38–0.43) could be attributed to various level of mixing between plagioclase-dominated impact melts and ultrafine pyroxene and/or titanomagnetite produced from the target basalt due to impact. Predominance of schlieren and impactor components (mainly Cr, Ni), and nearly absence of vesicles in the sub-mm sized spherules plausibly suggest that these quenched liquid droplets could have produced from the impactor-rich, hotter (~1,100 °C or more) central part of the plume, whereas the morpho-chemistry of the mm-sized spherules induces their formation from the relatively cool outer part of the same impact plume.

Journal ArticleDOI
TL;DR: In this article, the authors estimate that the Chelyabinsk fireball may have generated of order 625 W of energy in the form of very low frequency radiation, and find some tentative evidence to indicate that the acoustic conversion efficiency at a 100 km range was of order 0.1 %.
Abstract: Simultaneous, also called electrophonic sounds were widely reported by eye-witnesses to the Chelyabinsk fireball. The available data indicate that such sounds were heard at ranges to at least ~100 km from the fireball’s atmospheric path. We estimate that the fireball may have generated of order 625 W of energy in the form of very low frequency radiation, and we find some tentative evidence to indicate that the acoustic conversion efficiency at a 100 km range was of order 0.1 %. Numerical simulations of the atmospheric flight path indicate that electrophonic sounds should have commenced some 5 s after the fireball first became luminous and would have lasted for some 7.5 s prior to the moment of catastrophic break-up.

Journal ArticleDOI
TL;DR: The origin of the Rio Cuarto crater field, Argentina has been widely debated since the early 1990s when it was first brought to public attention as discussed by the authors, and five distinct impact formation models are described.
Abstract: The origin of the Rio Cuarto crater field, Argentina has been widely debated since the early 1990s when it was first brought to public attention. In a binary on–off sense, however, the craters are either of a terrestrial origin or they formed via a large asteroid impact. While there are distinct arguments in favour of the former option being the correct interpretation, it is the latter possibility that is principally investigated here, and five distinct impact formation models are described. Of the impact scenarios it is found that the most workable model, although based upon a set of fine-tuned initial conditions, is that in which a large, 100–150-m initial diameter asteroid, entered Earth’s atmosphere on a shallow angle path that resulted in temporary capture. In this specific situation a multiple-thousand kilometer long flight path enables the asteroid to survive atmospheric passage, without suffering significant fragmentation, and to impact the ground as a largely coherent mass. Although the odds against such an impact occurring are extremely small, the crater field may nonetheless be interpreted as having potentially formed via a very low-angle, smaller than 5° to the horizon, impact with a ground contact speed of order 5 km/s. Under this scenario, as originally suggested by Schultz and Lianza (Nature 355:234, 1992), the largest of the craters (crater A) in the Rio Cuarto structure was produced in the initial ground impact, and the additional, smaller craters are interpreted as being formed through the down-range transport of decapitated impactor material and crater A ejecta.

Journal ArticleDOI
TL;DR: In this paper, the stability of the electrostatic electron cyclotron wave in a plasma composed of hydrogen, oxygen and electrons was studied and expressions for the frequency and growth rate of the wave were derived.
Abstract: We have studied the stability of the electrostatic electron cyclotron wave in a plasma composed of hydrogen, oxygen and electrons. To conform to satellite observations in the low latitude boundary layer we model both the ionic components as drifting perpendicular to the magnetic field. Expressions for the frequency and the growth rate of the wave have been derived. We find that the plasma can support electron cyclotron waves with a frequency slightly greater than the electron cyclotron frequency ω ce ; these waves can be driven unstable when the drift velocities of both the ions are greater than the phase velocity of the wave. We thus introduce another source of instability for these waves namely multiple ion beams drifting perpendicular to the magnetic field.

Journal ArticleDOI
TL;DR: In this article, the authors analytically estimate the magnetic field scale of planets with physical core conditions similar to that of Earth from a statistical physics point of view, and apply their calculations to Earth, where the currents would be driven by the temperature difference at the outer-inner core boundary, Jupiter and the Jupiter satellite Ganymede.
Abstract: In this paper we analytically estimate the magnetic field scale of planets with physical core conditions similar to that of Earth from a statistical physics point of view. We evaluate the magnetic field on the basis of the physical parameters of the center of the planet, such as density, temperature, and core size. We look at the contribution of the Seebeck effect on the magnetic field, showing that a thermally induced electrical current can exist in a rotating fluid sphere. We apply our calculations to Earth, where the currents would be driven by the temperature difference at the outer-inner core boundary, Jupiter and the Jupiter’s satellite Ganymede. In each case we show that the thermal generation of currents leads to a magnetic field scale comparable to the observed fields of the considered celestial bodies.

Journal ArticleDOI
TL;DR: In this article, high-resolution infrared (IR) images of the rare super cyclone Phailin of the Northern Indian Ocean as well as 40-kHz sferics data as recorded over Kalyani have been analyzed with a view to investigate the characteristics of the cyclone.
Abstract: VIIRS high-resolution infrared (IR) images of the rare super cyclone Phailin of the Northern Indian Ocean as well as 40 kHz sferics data as recorded over Kalyani have been analyzed in this paper with a view to investigate the characteristics of the super cyclone. The maximum IR brightness temperature in the eye of the cyclone was pretty warm and it was illuminated by airglow. The Phailin was one of the strongest cyclones with a peak estimated intensity of 140 kts. Our round-the-clock sferics data also reveals remarkable changes in the sferics record on October 10, 2013, when the super cyclone was active.

Journal ArticleDOI
TL;DR: In this paper, an explanation of stronger than expected Draconids 2011 activity basing on the assumption of unusually high density of 1900 trail of the comet 21P Giacobini-Zinner is provided.
Abstract: The article provides an explanation of stronger than expected by the Author Draconids 2011 activity basing on the assumption of unusually high density of 1900 trail of the comet 21P Giacobini-Zinner. Also, a revised prediction for Draconids 2014 is presented, which should also be caused by 1900 trail. For this prediction a “vertical trails” approach is used. This approach is described in the article.

Journal ArticleDOI
TL;DR: In this article, the authors used the method of serendipitous stellar occultations to estimate the number of Kuiper Belt Objects (KBOs) in a typical scenario.
Abstract: The direct detection of Kuiper Belt Objects (KBOs) by telescopic imaging is not currently practical for objects much less than 100 km in diameter. However, indirect methods such as serendipitous stellar occultations might still be employed to detect these bodies. The method of serendipitous stellar occultations has been previously used with some success in detecting KBOs—Roques et al. (Astron J 132(2):819–822, 2006) detected three Trans-Neptunian objects; Schlichting et al. (Nature 462(7275):895–897, 2009) and Schlichting et al. (Astrophys J 761:150, 2012) each detected a single object in archival Hubble Space Telescope data. However, previous assessments of KBO occultation detection rates have been calculated only for telescopes—we extend this method to video camera systems, and we apply this derivation to the automated meteor camera systems currently in use at the University of Western Ontario. We find that in a typical scenario we can expect one occultation per month. However recent studies such as those of Shankman et al. (Astrophys. J. Lett. 764. doi: 10.1088/2041-8205/764/1/L2 , 2013) and Gladman et al. (AAS/Division for Planetary Sciences Meeting Abstracts, 2012) which indicate that the population of small KBOs may be smaller than has been assumed in the past may result in a sharp reduction of these rates. Nonetheless, a survey for KBO occultations using existing meteor camera systems may provide valuable information about the number density of KBOs.

Journal ArticleDOI
TL;DR: In this paper, the authors developed morphologic parameters and quantitative methods for presenting the morphometric characteristics of impact craters, analyzing their relational distribution, and estimating the relative order of their formation.
Abstract: Impact craters on the lunar surface have a variety of morphometric characteristics that are very useful in understanding the evolutionary history of lunar landscape morphologies. Based on digital elevation model data and photographs from China’s Chang’E-1 lunar orbiter, we develop morphologic parameters and quantitative methods for presenting the morphometric characteristics of impact craters, analyzing their relational distribution, and estimating the relative order of their formation. We also analyze features in profile where craters show signs of having formed on the edge of previously existing craters to show that superimposed impacts affect morphologic reconstructions. As a result, impact craters have significant effects on the reconstruction of ancient topography and the estimation of relative formation ages.