scispace - formally typeset
Search or ask a question
JournalISSN: 0160-8347

Estuaries 

Springer Nature
About: Estuaries is an academic journal. The journal publishes majorly in the area(s): Estuary & Bay. It has an ISSN identifier of 0160-8347. Over the lifetime, 1887 publications have been published receiving 118202 citations.
Topics: Estuary, Bay, Salt marsh, Marsh, Population


Papers
More filters
Journal ArticleDOI
TL;DR: The relationship between harmful algal blooms and eutrophication of coastal waters from human activities has been investigated in this paper, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae.
Abstract: Although algal blooms, including those considered toxic or harmful, can be natural phenomena, the nature of the global problem of harmful algal blooms (HABs) has expanded both in extent and its public perception over the last several decades. Of concern, especially for resource managers, is the potential relationship between HABs and the accelerated eutrophication of coastal waters from human activities. We address current insights into the relationships between HABs and eutrophication, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae. Through specific, regional, and global examples of these various relationships, we offer both an assessment of the state of understanding, and the uncertainties that require future research efforts. The sources of nutrients poten- tially stimulating algal blooms include sewage, atmospheric deposition, groundwater flow, as well as agricultural and aquaculture runoff and discharge. On a global basis, strong correlations have been demonstrated between total phos- phorus inputs and phytoplankton production in freshwaters, and between total nitrogen input and phytoplankton pro- duction in estuarine and marine waters. There are also numerous examples in geographic regions ranging from the largest and second largest U.S. mainland estuaries (Chesapeake Bay and the Albemarle-Pamlico Estuarine System), to the Inland Sea of Japan, the Black Sea, and Chinese coastal waters, where increases in nutrient loading have been linked with the development of large biomass blooms, leading to anoxia and even toxic or harmful impacts on fisheries re- sources, ecosystems, and human health or recreation. Many of these regions have witnessed reductions in phytoplankton biomass (as chlorophyll a) or HAB incidence when nutrient controls were put in place. Shifts in species composition have often been attributed to changes in nutrient supply ratios, primarily N:P or N:Si. Recently this concept has been extended to include organic forms of nutrients, and an elevation in the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC:DON) has been observed during several recent blooms. The physiological strategies by which different groups of species acquire their nutrients have become better understood, and alternate modes of nutrition such as heterotrophy and mixotrophy are now recognized as common among HAB species. Despite our increased un- derstanding of the pathways by which nutrients are delivered to ecosystems and the pathways by which they are assimilated differentially by different groups of species, the relationships between nutrient delivery and the development of blooms and their potential toxicity or harmfulness remain poorly understood. Many factors such as algal species presence/ abundance, degree of flushing or water exchange, weather conditions, and presence and abundance of grazers contribute to the success of a given species at a given point in time. Similar nutrient loads do not have the same impact in different environments or in the same environment at different points in time. Eutrophication is one of several mechanisms by which harmful algae appear to be increasing in extent and duration in many locations. Although important, it is not the only explanation for blooms or toxic outbreaks. Nutrient enrichment has been strongly linked to stimulation of some harmful species, but for others it has not been an apparent contributing factor. The overall effect of nutrient over- enrichment on harmful algal species is clearly species specific.

2,500 citations

Journal ArticleDOI
TL;DR: It is suggested that the abundance of many species, both epifauna and infauna, is positively correlated with two distinct aspects of plant morphology: 1) the root-rhizome mat, and 2) the plant canopy.
Abstract: When compared with nearby unvergetated areas, seagrass meadows contain a dense and strikingly rich assemblage of vertebrates and invertebrates. Most recent literature has focused on evaluating the role of predation in structuring seagrass faunal communities; however, habitat complexity, abundance of food and sediment stability may also be important. This paper summarizes studies relating predator-prey relationships to different features of the seagrass system. This review suggests that the abundance of many species, both epifauna and infauna, is positively correlated with two distinct aspects of plant morphology: 1) the root-rhizome mat, and 2) the plant canopy. A scheme was developed that defines the conditions under which any particular species will be abundant or rare in a seagrass assemblage. This scheme is based on prey and predator characteristics (e.g., epifaunal vs. infaunal, tube-dweller vs. nontube dweller, burrowers vs. nonburrowers, and large vs. small as adult) and on characteristics of the seagrasses (e.g., leaf morphology, shoot density, shoot biomass, structural complexity of the meadow, and root-rhizome density and standing crop).

1,073 citations

Journal ArticleDOI
TL;DR: On both the basis of biomass and biogeochemical reactivity, benthic microalgae play significant roles in system productivity and trophic dynamics, as well as such habitat characteristics as sediment stability.
Abstract: The microphytobenthos consists of unicellular eukaryotic algae and cyanobacteria that grow within the upper several millimeters of illuminated sediments, typically appearing only as a subtle brownish or greenish shading. The surficial layer of the sediment is a zone of intense microbial and geochemical activity and of considerable physical reworking. In many shallow ecosystems, the biomass of benthic microalgae often exceeds that of the phytoplankton in the overlying waters. Direct comparison of the abundance of benthic and suspended microalgae is complicated by the means used to measure biomass and by the vertical and horizontal distribution of the microphytobenthos in the sediment. Where biomass has been estimated as chlorophyll a, there may be negligible to large (40%) error due to interference by degradation products, except where chlorophyll is measured by high-performance liquid chromatography. The vertical distribution of microphytobenthos, aside from mat-forming species, is determined by the opposing effects of their vertical migration, which tends to concentrate them near the surface, and physical mixing by overlying currents, which tends to cause an even vertical distribution through the mixed layer of sediment. Uncertainties in vertical distribution are compounded by frequently patchy horizontal distribution. Under-sampling on small (<1 m) scales can lead to errors in the estimate that are comparable to the ranges of seasonal and geographic variation. These uncertainties are compounded by biases in the techniques used to estimate production by the microphytobenthos. In most environments studied, biomass (as chlorophyll a) and light availability appear to be the principal determinants of benthic primary production. The effect of variable light intensities on integral production can be described by a functional response curve. When normalized to the chlorophyll content of the surficial sediment, the residual variation in the data described by the functional response curve is due to changes in the chlorophyll-specific response to irradiance. Production by the benthos is often a significant fraction of production in the water column and microphytobenthos may contribute directly to water column production when they are resuspended. Thus on both the basis of biomass and biogeochemical reactivity, benthic microalgae play significant roles in system productivity and trophic dynamics, as well as such habitat characteristics as sediment stability. *** DIRECT SUPPORT *** A01BY074 00003

894 citations

Journal ArticleDOI
TL;DR: The Mississippi River system ranks among the world's top 10 rivers in freshwater and sediment inputs to the coastal ocean and contributes 90% of the freshwater loading to the Gulf of Mexico, and terminates amidst one of the United States' most productive fisheries regions and the location of the largest zone of hypoxia, in the western Atlantic Ocean as mentioned in this paper.
Abstract: The Mississippi River system ranks among the world's top 10 rivers in freshwater and sediment inputs to the coastal ocean. The river contributes 90% of the freshwater loading to the Gulf of Mexico, and terminates amidst one of the United States' most productive fisheries regions and the location of the largest zone of hypoxia, in the western Atlantic Ocean. Significant increases in riverine nutrient concentrations and loadings of nitrate and phosphorus and decreases in silicate have occurred this century, and have accelerated since 1950. Consequently, major alterations have occurred in the probable nutrient limitation and overall stoichiometric nutrient balance in the adjacent continental shelf system. Changes in the nutrient balances and reduction in riverine silica loading to, the continental shelf appear to have led to phytoplankton species shifts offshore and to an increase in primary production. The phytoplankton community response, as indicated by long-term changes in biological uptake of silicate and accumulation of biologically bound silica in sediments, has shown how the system has responded to changes in riverine nutrient loadings. Indeed, the accumulation of biologically bound silica in sediments beneath the Mississippi River plume increased during the past two decades, presumably in response to, increased nitrogen loading. The duration, size, and severity of hypoxia has probably increased as a consequence of the increased primary production. Management alternatives directed at water pollution issues within the Mississippi River watershed may have unintended and contrasting impacts on the coastal waters of the northern Gulf of Mexico.

856 citations

Network Information
Related Journals (5)
Estuarine Coastal and Shelf Science
9.1K papers, 361.1K citations
90% related
Limnology and Oceanography
11.2K papers, 917.6K citations
90% related
Journal of Experimental Marine Biology and Ecology
9.6K papers, 453.2K citations
89% related
Marine Ecology Progress Series
16.7K papers, 1M citations
89% related
Marine Biology
12.1K papers, 565.4K citations
85% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
200584
200490
2003137
2002126
200197
200067