scispace - formally typeset
Search or ask a question

Showing papers in "Global Journal of Environmental Science and Management in 2016"


Journal ArticleDOI
TL;DR: In this article, a column type continuous flow operation was used to obtain the breakthrough curves and the degree of column utilization for dyes falls in range from 60 to 76% while for phenols was in the range 53-58%.
Abstract: Fertilizer plant waste carbon slurry has been investigated after some processing used as efficient adsorbent for the fast removal and rapid adsorption of dyes and phenols using columns. The results reveals that the adsorbent developed from carbon slurry is carbonaceous in nature and having appreciable surface area (380 m 2 /g) can remove dyes both cationic (meldola blue, methylene blue, chrysoidine G, crystal violet) as well as anionic (ethyl orange, metanil yellow, acid blue 113), and phenols (phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol) fruitfully from water. The column type continuous flow operations were used to obtain the breakthrough curves. The breakthrough capacity, exhaustion capacity and degree of column utilization were optimized and evaluated from the plots. The results obtained revealed that the degree of column utilization for dyes falls in range from 60 to 76% while for phenols was in the range 53-58%. The exhaustion capacities were quite high as compared to the breakthrough capacities and were found to be 217, 211, 104, 126, 233, 248, 267 mg/g for meldola blue, crystal violet, chrysoidine G, methylene blue, ethyl orange, metanil yellow, acid blue 113, respectively and 25.6, 72.2, 82.2 and 197.3 mg/g for phenol, 2-chlorophenol, 4- chlorophenol and 2,4-dichlorophenol, respectively.

87 citations


Journal ArticleDOI
TL;DR: In this paper, isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI) in a tannery industry wastewater.
Abstract: The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI) in a tannery industry wastewater of Nagalkeni, Chennai. The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI) in a tannery industry wastewater against the different pH, fungi biomass and chromium(VI) concentration (dilution ratio). The results of this study indicated that the order of maximum removal of chromium(VI) by an isolated fungi species at an optimum pH of 3, fungi biomass of 4g and an initial chromium(VI) concentration of 18.125 mg/L (dilution ratio 4) is A. niger > A. flavus > A. fumigatus > A. nidulans > A. heteromorphus > A. foetidus > A. viridinutans. This study found that the maximum removal of chromium(VI) was achieved by Aspergillus niger (96.3 %) than other fungi species at chromium(VI) concentration of 18.125 mg/L in a tannery industry wastewater. The chromium removal from tannery industry wastewater was validated by checking chromium removal in an aqueous solution and by checking the removal efficiency of other parameters in a tannery industry wastewater using same isolated A. niger. Biosorption model was proposed to simulate the experimental condition for removing chromium(VI) in a tannery industry wastewater by all isolated fungi species. The R 2 and x 2 values of the proposed model predicted that the proposed biosorption model is very much useful for predicting the trend of reduction potential of chromium(VI) in a tannery industry wastewater by all isolated fungi species. This study suggested that one could select the type of fungi species, ion concentration level, selection of treatment period, quantity of biomass to be used, and pH level of the medium, to achieve the highest reduction of any toxic metals from any contaminated water, wastewater and soil environment.

46 citations


Journal ArticleDOI
TL;DR: In this article, a review shed lights on the removal proficiency of various low-cost agricultural adsorbent for the elimination of cadmium (II), copper (II, and lead (II) ions, considering performance, surface modification, equilibrium adsorptive studies, kinetic characteristics, coefficient of correlation (R 2 ) and reuse.
Abstract: The expensive nature of metal ions detoxification from wastewater have restricted the use of conventional treatment technologies. Cheap, alternative measures have been adopted to eliminate metal contamination, and adsorptions using agricultural adsorbents seem to be the way forward. The use of agricultural adsorbents for cadmium (II), copper (II) and lead (II) ion removal has gained more interest in literature due to the level of contamination in water bodies. This review shed lights on the removal proficiency of various lowcost agricultural adsorbent for the elimination of cadmium (II), copper (II) and lead (II) ions, considering performance, surface modification, equilibrium adsorptive studies, kinetic characteristics, coefficient of correlation (R 2 ) and reuse. Furthermore, these agricultural adsorbents have displayed better performance when rivaled with commercial/conventional adsorbent. Observations from different adsorptive capacities presented owe their performance to surface area improvement/modification, pH of the adsorbent, ionic potential of the solution, initial concentration and elemental component of the adsorbent. However, gaps have been identified to improve applicability, sorption performance, economic viability, optimization, and commercialization of suitable agricultural adsorbents.

42 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated the removal of p-nitrophenol by adsorption onto olive cake based activated carbon having a BET surface area of 672 m²/g.
Abstract: The present work was carried out to evaluate the removal of p-nitrophenol by adsorption onto olive cake based activated carbon having a BET surface area of 672 m²/g. The batch adsorption experimental results indicated that the equilibrium time for nitrophenol adsorption by olive cake-based activated carbon was 120min. The adsorption data was modeled by equilibrium and kinetic models. The pseudo- first and second order as well as the Elovichkinetic models were applied to fit the experimental data and the intraparticle diffusion model was assessed for describing the mechanism of adsorption. The data were found to be best fitted to the pseudo-second order model with a correlation coefficient (R2=0.986). The intraparticle diffusion mechanism also showed a good fit to the experimental data, showing two distinct linear parts assuming that more than one step could be involved in the adsorption of nitrophenol by the activated carbon. The equilibrium study was performed using three models including Langmuir, Freundlich and Temkin. The results revealed that the Temkin equilibrium model is the best model fitting the experimental data (R2=0.944). The results of the present study proved the efficiency of using olive cake based activated carbon as a novel adsorbent for the removal of nitrophenol from aqueous solution.

41 citations


Journal ArticleDOI
Sushmita De1, S. K. Maiti1, Tumpa Hazra1, Anupam Debsarkar1, Amit Dutta1 
TL;DR: In this paper, the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste (MSW) landfill site in Kolkata, India using leachates index was evaluated.
Abstract: ABS TRACT: Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste (MSW) landfill site in Kolkata, India using leachate pollution index. The results of the physico-chemical and biological analyses of leachate indicated that landfill site was in its methanogenic phase. Among the analysed leachate pollutants, TDS, BOD 5, COD, TKN, NH 3 -N, Cl¯ , TCB, Pb, and Hg surpassed the leachate discharge standards for inland surface water as specified by the municipal solid waste (management and handling) rules, 2013 for both the dumping grounds. Moreover the concentrations of total Cr and Zn also exceeded the leachate disposal standards for the active dumping ground. The leachate pollution potentialities of both the active and closed dumping grounds were comparable as the overall LPI obtained 34.02 and 31.80 respectively. The overall LPI, LPI organic (LPI or ), LPI inorganic (LPI in ) and LPI heavy metals (LPI hm ) of both the dumping grounds largely exceeded the LPI and sub-LPI values for treated leachate before disposal to the inland surface water. In terms of the individual pollution rating, total coliform bacteria, TKN, NH 3 -N and Hg were identified as the dominant pollutants and major contributing factors for the leachate pollution potential.

37 citations


Journal ArticleDOI
Abstract: Analyzing the process of land use and cover changes during long periods of time and predicting the future changes is highly important and useful for the land use managers. In this study, the land use maps in the Ardabil plain in north-west part of Iran for four periods (1989, 1998, 2009 and 2013) are extracted and analyzed through remote sensing technique, using the land-sat satellite images. Then, the future land use changes are simulated for 2030 using integrated CA-Markov model according to the scenario of continuing current management process. The results show that in the period between 1989 and 2009, i.e. since two-thirds of the plain was declared restricted till all of it was declared thus, the study area has experienced a total of about 58645.08 ha changes. After the whole plain was restricted (since 2009 till 2014), the changes have been estimated to be 22466.88 ha. The prediction also indicates that the changes will equal 8908.83 ha by 2030. Agricultural lands and human-built environment constitute the majority of changes and are increasing continuously. The obtained Kappa values for the model accuracy assessment (higher than 0.8) indicated the models capability to predict future Land use/cover changes in the study area. Thus, analyzing Land use and cover changes trends from past to near future using CA-Markov model can play a significant role in land use policy making, planning, and managing of the restricted plains especially in the proposed study area.

30 citations


Journal ArticleDOI
TL;DR: In this paper, the role of gooseberry seeds as an effective biosorbent for remediating chromium(VI), a toxic heavy metal pollutant commonly found in effluents from tanneries and relevant industries.
Abstract: The current investigation presents the role of gooseberry ( Phyllanthus acidus ) seeds as an effective biosorbent for remediating chromium(VI)), a toxic heavy metal pollutant commonly found in effluents from tanneries and relevant industries. Biosorption was affected by pH, temperature and initial metal concentration. Furthermore, there is a need to understand the holistic effect of all variables to ascertain the best possible conditions for adsorption, therefore, these factors were considered and a total of 17 trials were run according to the Box Behnken design. Quadratic model had maximum R 2 value (0.9984) and larger F value (1109.92). From the Analysis Of Variance table and R 2 value, quadratic model was predicted to be the significant model with the best fit to the generated experimental data. The optimal parameters obtained from the contour plot for the maximum removal of chromium(VI) were initial metal concentration of 60 mg/L, pH value of 2, and temperature of 27∞C. Under these conditions, maximum removal of 92% was obtained. Thus this biosorbent substantially eliminates chromium(VI) under optimized conditions, enabling its use in larger scale.

28 citations


Journal ArticleDOI
TL;DR: In this article, a new two-tier mechanism of impact analysis using index numbers derived from a survey of 123 stakeholders is used to calculate the individual component impact analysis and the total carrying capacity of the area is computed in order to state the insight of the total capacity left for the tourism activities in Kerwa tourism area.
Abstract: ABS TRACT: The carrying capacity is well identified tool to manage problems due to uncontrolled tourism for any destination. This report highlights the carrying capacity estimation of Kerwa tourism area, Bhopal, India. The methodology used in this report is a new two-tier mechanism of impact analysis using index numbers derived from a survey of 123 stakeholders. From this the individual component impact analysis and the total carrying capacity of the area is computed in order to state the insight of the total carrying capacity left for the tourism activities in Kerwa tourism area. It is calculated from, the results so obtained, that the Kerwa catchment area falls in “very low impact category” and hence in a healthy state of the artwork in terms of total carrying capacity. The study conveys the current need in the destination management and tourism development as a road map for the destination managers for implementing sustainable tourism.

24 citations


Journal ArticleDOI
TL;DR: In this paper, the hazard and risk of desertification in the semi-arid western regions of Golestan Province in Iran were assessed using the Iranian model of desertified potential assessment.
Abstract: Risk assessment provides the possibility of planning and management to prevent and reduce the risk of desertification. The present study is aimed to assess the hazard and risk of desertification and to develop management programs in the semi-arid western regions of Golestan Province in Iran. Desertification rate was obtained using the Iranian model of desertification potential assessment. Since the rating system was considered for the indicators, data analyses were carried out according to the Mann-Whitney test. The risk of desertification was calculated based on hazard, elements at risk and vulnerability assessment maps. The intensity of desertification was estimated to be medium. Among the factors affecting desertification, agriculture by the weighted average of 3.22 had the highest effect, followed by soil, vegetation, water and wind erosion criteria by weighted averages of 2.45, 2.32, 2.15 and 1.6 respectively. Desertification risk assessment results also showed that about 78% of central and northern parts of the region, with the largest population and residential centers, surface and underground water resources, agriculture and horticulture, is confronted with a high to very high degree of risk. Management plans and control measures, based on risk values were presented in four activities (with two management priorities under critical and non-critical conditions). For the management program with the largest area. Control measures and strategies such as the establishment of halophytic and xerophytic plants, drainage networks, resilient facilities and infrastructure were proposed. Reducing the risk of desertification, could play a crucial role in the sustainable development of drylands and desert ecosystems.

22 citations


Journal ArticleDOI
TL;DR: In this paper, the major aim of the present study was to investigate element s (Fe, Ni, Pb, V, Zn) concentration in sediment and different tissues of Phragmities australis and Typha latifolia in Hor al-Azim Wetland southwestof Iran.
Abstract: The major aim of the present study was to investigate element s (Fe, Ni, Pb, V, Zn) concentration in sediment and different tissues of Phragmities australis andTypha latifolia in Hor al-Azim Wetland southwestofIran. Sampling of sediments and aquatic plants was carried out during spring and summer 2014. Results showed that the mean concentrations of chemical elements inPhragmities australis in root and stem-leaf were as follows: iron:4448

20 citations


Journal ArticleDOI
TL;DR: In this article, the projected time period corresponded to the final 20-year vision period of all-round development of Iran for the target point of 2025 based on a long-term plan.
Abstract: Mashhad City, according to the latest official statistics of the country is the second populated city after Tehran and is the biggest metropolis in the east of Iran. Considering the rapid growth of the population over the last three decades, the citys development area has been extended, significantly. This significant expansion has impacted natural lands on suburb and even some parts e.g. rangelands and agricultural area have been transited to urban land uses. The study was aimed at analyzing and simulating land use changes in Mashhad, Iran. The work needs a model to simulate land use changes among multiple categories and combine spatial and temporal changes during the projection period. Thus, Cellular Automata-Markov model was chosen to meet this target. In this work, the projected time period corresponded to the final 20-year vision period of all-round development of Iran for the target point of 2025 based on a long-term plan. Multi criteria evaluation approach integrated along with analytic hierarchy process were employed for preparing suitability maps for the five land uses, i.e. urban continuous patches, urban discontinuous patches, rural patches, agricultural lands, and range lands. Having applied the matrices utilized in model calibration, the best kappa coefficient proved to be associated with the land use maps dated 1996 and 2002. The Kappa index of quantity and allocation agreement was determined to be 0.9189 and 0.9529, respectively, which established an almost perfect agreement between simulated and observed land uses according to the year 2015. Change detection results showed that with the physical expansion of urban continuous patches, range lands and agricultural lands mostly transited to urban discontinuous patches and eventually were promoted to urban continuous texture. These developments or gains in urbanized patches will lead to some loses in agricultural lands and rangelands of the suburb in 2025. In addition, the analysis of projected land use map indicated that over the upcoming years, the development of the city in northern front, especially in northwestern region will be more intense with a higher speed in comparison with the other regions.

Journal ArticleDOI
TL;DR: In this article, the use of Parthenium hysterophorus, a weed, explored for water purification is described. And the potential of the weed has been tested for several heavy metals and dyes as described in this paper.
Abstract: Heavy metals and dyes are major contributors in contamination of water streams. These contaminants enter into our eco- system, thus posing a significant threat to public health, ecological equilibrium and environment. Thus a combined discharge of these contaminants results in water pollution with high chemical oxygen demand, biological oxygen demand, color, particulate matter, suspended particles and odor. The mounting pollution of the water bodies has attracted attention of the researchers towards the development of novel techniques and materials for water pollution. The paper describes the use of such a material Parthenium hysterophorus , a weed, explored for water purification. The potential of the weed has been tested for several heavy metals and dyes as described in this paper. As per literature the weed is capable of showing adsorption tendency up to 90% in certain cases for some heavy metals and dyes. Powdered weed, activated carbon, ash etc. of Partheniumhave been employed for the removal process.

Journal ArticleDOI
TL;DR: In this article, the effects of land cover on runoff generation and soil loss in a semi-arid region were evaluated using the Kakhk experimental watershed in Gonabad County of Khorasan-e Razave Province in Iran.
Abstract: Erosion plots were selected for characterizing the effects of main natural factors on runoff and soil loss in a semi-arid region. These erosion plots with an area of 40 m2 are located in the Kakhk experimental watershed in Gonabad County of Khorasan-e Razave Province in the north-eastern Iran. Data acquired from 2008 to 2015 include slope, aspect, soil texture and land covers (canopy and litter) factors that were selected as main natural factors and it was tried to determine the effects of these factors on runoff and soil loss amount. In the next stage, it was focused on evaluation of the effects of land covers on runoff generation and soil loss in more details. For this purpose, in each class of the mentioned factors, the relationship between land covers and runoff and soil loss was analysed. The maximum of runoff and soil loss were occurred at E site with the amount of 15.6 mm and 140 g/m2 respectively. Results showed that soil loss and runoff have decreased where the amounts of land covers have increased, and the line gradient is steeper for soil loss reduction than runoff generation. The result especially characterized the role of land covers on soil loss. Based on these results land covers have a significant effect on soil loss but this effect is mostly highlighted in the highest and lowest conditions of erosion potential, rather than the medium erosion potential condition. Furthermore, in each plot and event, a dominant factor determines the quantity of the effect of land cover on runoff and soil loss.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects.
Abstract: Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i) promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii) improving compost quality and also marketing the compost products simultaneously, iii) promoting the private sector involvements throughout the municipal solid waste management system.

Journal ArticleDOI
TL;DR: In this article, the ability of microalgae Spirulina platensis and Chlorella vulgaris to remove nitrate and phosphate in aqueous solutions was evaluated, and the statistical results showed that the amount of phosphate and nitrate removal during different time periods by C. vulgaris depicted a significant difference at P<0.01, while S. platensis demonstrated a significant effect at P < 0.05.
Abstract: The aim of this study was to evaluate the ability of microalgae Spirulina platensis and Chlorella vulgaris to remove nitrate and phosphate in aqueous solutions. Spirulina platensis and Chlorella vulgar is microalgae was collected in 1000 ml of municipal water and KNO3, K2HPO4 was added as sources of nitrate and phosphate in three different concentrations (0.25, 0.35 and 0.45g/L). During the growth period, the concentration of nitrate and phosphate was recorded at 1, 4, 6 and 8 days. The highest nitrate removal on the 8 day for Chlorella vulgaris was 89.80% at the treatment of 0.25g/L and for Spirulina platensis was 81.49% at the treatment of 0.25g/L. The highest phosphate removal for Spirulina platensis was 81.49% at the treatment of 0.45g/L and for Chlorella vulgaris was 88% at the treatment of 0.45g/L. The statistical results showed that the amount of phosphate and nitrate removal during different time periods by Chlorella vulgaris depicted a significant difference at P<0.01, while Spirulina platensis demonstrated a significant difference at P<0.05.Thus, Spirulina platensis and Chlorella vulgaris can be effectively used to remove nitrate and phosphate from effluent and waste water treatments, although it demands more research in different climatic conditions.

Journal ArticleDOI
TL;DR: In this article, the application of water quality index in evaluating the ground water quality in the North-east area of Jaipur in pre and post monsoon for public usage is presented.
Abstract: Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluorideand potassium, pH, turbidity, temperature) were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70), Lalawas (362.74,396.67), Jaisinghpura area (286.00,273.78) were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium.Saipura (122.52, 131.00), Naila (120.25, 239.86), Galta (160.9, 204.1) were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

Journal ArticleDOI
TL;DR: In this article, a study was carried out to implement a comprehensive strategic environmental management plan in the Mond protected area in southern Iran, where the protected area was zoned using multi criteria decision method.
Abstract: In recent decades, necessity to protect environment has been a serious concern for all people and international communities. In appropriate development of human economic activities, subsistence dependence of the growing world population on nature decreases the natural diversity of ecosystems and habitats day by day and provides additional constraints for life and survival of wildlife. As a result, implementation of programs to protect species and ecosystems is of great importance. The current study was carried out to implement a comprehensive strategic environmental management plan in the Mond protected area in southern Iran. Accordingly, the protected area was zoned using multi criteria decision method. According to the numerical models, fifteen data layer were obtained on a scale of 1:50,000. The results revealed that 28.35% out of the entire study area belongs to nature conservation zone. In the following step, in order to offer the strategic planning using strength, weaknesses, opportunities and threats method, a total number of 154 questionnaires were prepared and filled by the relevant experts. For this purpose, after identifying the internal and external factors, they were weighted in the form of matrices as; internal factor evaluation and external factor evaluation. Analytical hierarchy process and expert choice software were applied to weight the factors. At the end, by considering the socioeconomic and environmental issues, the strategy of using protective strategies in line with international standards as well as a strong support of governmental national execution with a score of 6.05 was chosen as the final approach.

Journal ArticleDOI
TL;DR: A geographic information system-based and multi-criteria evaluation for locating a gas power plant in Natanz City in Iran and the utilization of GAMMA fuzzy operator was shown to be suitable for this site selection.
Abstract: 197 ABSTRACT: This research recommends a geographic information system-based and multi-criteria evaluation for locating a gas power plant in Natanz City in Iran. The multi-criteria decision framework offers a hierarchy model to select a suitable place for a gas power plant. This framework includes analytic hierarchy process, fuzzy set theory and weighted linear combination. The analytic hierarchy process was applied to compare the importance of criteria among hierarchy elements classified by environmental group criteria. In the next step, the fuzzy logic was used to regulate the criteria through various fuzzy membership functions and fuzzy layers were formed by using fuzzy operators in the Arc-GIS environment. Subsequently, they were categorized into 6 classes using reclassify function. Then weighted linear combination was applied to combine the research layers. Finally, the two approaches were analyzed to find the most suitable place to set up a gas power plant. According to the results, the utilization of GAMMA fuzzy operator was shown to be suitable for this site selection.

Journal ArticleDOI
TL;DR: In this article, three phenol degrading bacteria from Arak Petrochemical Complex effluent were isolated which consume phenol, including Rhodococcus pyridinivorans (NS1), Advenella faeciporci (NS2) and Pseudomonas aeroginosa (NS3).
Abstract: Phenol is an environmental pollutant present in industrial wastewaters such as refineries, coal processing and petrochemicals products. In this study three phenol degrading bacteria from Arak Petrochemical Complex effluent were isolated which consume phenol. Molecular analysis was used to identify bacteria and isolated bacteria were identified as Rhodococcus pyridinivorans (NS1),Advenella faeciporci (NS2) andPseudomonas aeroginosa (NS3). Among the isolated strains, NS1 had the highest ability to degrade phenol. In order to observe the best yield in phenol biodegradation using NS1, optimization was performed using one factor at a time of experimental design to investigate the effect of four factors, including pH, temperature, phosphate and urea concentration. The optimal biodegradation condition through or tho pathway was pH = 8, urea = 1 g/L, temperature = 30∞C and K 2 HPO 4 = 0.5 g/L. Under the suggested condition, a biodegradation efficiency of 100% was achieved. Moreover, NS1 has shown growth and phenol degradation in concentrations between 250 to 2000 mg/L. In a nutshell, the results revealed that phenol efficiently consumed by NS1 as the sole carbon source. Obviously, the isolate strain may be seen as an important tool in the bioremediation of wastewater effluent, petrochemical complex.

Journal ArticleDOI
TL;DR: In this paper, different activated carbons were prepared from carbonized African beech wood sawdust by potassium hydroxide activation, and the phenol adsorption capacity of the prepared carbons was evaluated.
Abstract: In the present study, different activated carbons were prepared from carbonized African beech wood sawdust by potassium hydroxide activation. The activated carbons were characterized by brunauer-emmett-teller, scanning electron microscope, fourier transform infrared spectroscopy, and thermogravimetric analyzer. The phenol adsorption capacity of the prepared carbons was evaluated. The different factors affecting phenol's removal were studied including: contact time, solution pH and initial phenol concentration. The optimum phenol removal was obtained after a contact time of 300 min. and at an initial phenol solution pH 7. The maximum removal percentages were determined at 5 mg/L initial phenol concentration as 79, 93, 94 and 98% for AC0, AC1, AC2 and AC3; respectively. The adsorption of phenol on African beech sawdust activated carbons was found to follow the Lagergren first order kinetics and the intraparticle diffusion mechanism gave a good fit to the experimental data. The isothermal models applied fitted the experimental data in the order: Langmuir> Dubinin-Radushkevich> Freundlich and Temkin.

Journal ArticleDOI
Q. Xie1, S. Bai1, Y. Li1, L. Liu, S. Wang1, J. Xi2 
TL;DR: The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates.
Abstract: This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the obstacles due to a DPSIR model combined with fuzzy analytic hierarchy process technique and established the hierarchy of the model to prioritize the responses regarding the driving forces, pressures, states and impacts.
Abstract: The aim of this study is to evaluate the obstacles due to a DPSIR model combined with fuzzy analytic hierarchy process technique. Hence, to prioritize the responses regarding the driving forces, pressures, states and impacts, the hierarchy of the model is established. Evaluations and prioritization of model results of urban transport situation in Tehran have provided a number of necessary issues for strategic planning to reduce local air pollution and emission of greenhouse gases by prioritizing their effectiveness in the implementation, including; a) development and improvement of public transport (R1), b) improvement of fuel quality (R2), c) improvement of vehicle emission standards (R3), d) vehicle inspection (R4), f) traffic management (R5). In this study, responses to improve the factors of pressure, stimulus, the current state and the impacts were examined and compared hierarchically. Finally, their priority relative to each other was achieved. Development and improvement of public transport, improvement of the quality of fuel, improvement of vehicle emission standards, vehicle check-up and finally urban traffic management were identified respectively as practical steps to control and reduce air pollution in Tehran.

Journal ArticleDOI
TL;DR: In this paper, the authors conducted a study to determine if there is a gender difference in the resource consumption activities of students in Central Mindanao University, a Philippine state university, and found that male respondents have a significantly higher ecological footprint compared to female respondents.
Abstract: To determine if there is a gender difference in the resource consumption activities of students in Central Mindanao University, a Philippine state university, an ecological foot printing study was conducted in August 2014. Consumption data from 380 student respondents were gathered using a survey questionnaire. A web-based software created by the Global Footprint Network was used to convert the consumption data into its equivalent ecological footprint value. Sample size was reduced to 324 (male = 162; female = 162) through a 1:1 nearest neighbor matching without replacement method for propensity score matching. Subsequently, unpaired t-test was employed for comparing the difference in ecological footprint between the male and female student respondents. Results reveal that the students’ ecological footprint is slightly lower than the national average. Furthermore, most of their ecological footprint comes from their carbon footprint. Male respondents were found to have a significantly higher ecological footprint compared to female respondents. This implies gender difference in terms of resource consumption.

Journal ArticleDOI
TL;DR: Investigation of the community structure of mangrove crabs under two different management schemes finds significant differences in crab composition and abundance between protected mangroves and from reforestedMangroves.
Abstract: Reforestation is one of the Philippinesgovernment efforts to restore and rehabilitate degraded mangrove ecosystems. Although there is recovery of the ecosystem in terms of vegetation, the recovery of closely-linked faunal species in terms of community structure is still understudied. This research investigates the community structure of mangrove crabs under two different management schemes: protected mangroves and reforested mangroves. The transect- plot method was employed in each management scheme to quantify the vegetation, crab assemblages and environmental variables. Community composition of crabs and mangrove trees were compared between protected and reforested mangroves using non-metric multi-dimensional scaling and analysis of similarity in PRIMER 6. Chi-squared was used to test the variance of sex ration of the crabs. Canonical Correspondence Analysis was used to determine the relationship between crabs and environmental parameters. A total of twelve species of crabs belonging to six families were identified in protected mangroves while only four species were documented in reforested mangroves. Perisesarma indiarum and Baptozius vinosus were the most dominant species in protected and reforested mangrove, respectively. Univariate analysis of variance of crab assemblage data revealed significant differences in crab composition and abundance between protected mangroves and from reforested mangroves ( P<0.05). Canonical correspondence analysis showed that soil texture was found to greatly affect the distribution of crab assemblages and mangroves ( P<0.05).Environmental factors and human intervention had contributed to the difference in crab assemblages in mangrove ecosystems.

Journal ArticleDOI
TL;DR: In this paper, the metal removal potential of estuaries during accidental spills was brought out by mixing artificial river water containing high concentration of Mn, Cu, Zn, Ni and Pb with sea water at different salinity regimes.
Abstract: Estuaries are well known for their potential in removing metal from fresh water to provide micro- nutrients to aquatic life. In the present investigation, we have tried to bring out the metal removal potential of estuaries during accidental spills. For this purpose artificial river water containing high concentration of Mn, Cu, Zn, Ni and Pb were mixed with sea water at different salinity regimes. Water samples were taken from a station on the main branch of Tajan River that flows in to the Caspian Sea. For this purpose, solutions with a concentration of 5†mg/L of each studied metal (Mn,Cu, Zn, Pb) were prepared in Tajan River water. The salinity regimes include 3, 6, 8, 10 and 11 ppt. It was noted that metal concentration decreased by increasing salinity. Metals were flocculated at different rates: Cu † (88%) > Ni (86%) > Pb (84%) > Mn (74%).Thus, as average about 80% of total elemental content flocculates. Hence, it was concluded that a large amount of micro nutrients is carried by the river and flocculated in the estuary where the river water mixes with the sea water which may play a vital role in supplying nutrients to the aquatic animals. Cluster analyses have shown that Mn and Ni are governed by EC, pH and salinity.

Journal ArticleDOI
TL;DR: In this paper, the main purpose of the study was to determine spatial distribution of elements Fe, Sb, Mn in agriculture soils and crops of Hamedan Province in Iran.
Abstract: ABS TRACT: Presence of toxic metals in agricultural soils can impose adverse health impact on consumers. The main purpose of this study was to determine spatial distribution of elements Fe, Sb, Mn in agriculture soils and crops of Hamedan Province in Iran. Soil samples (0-20 cm depth) were collected from an area of 2831 km 2 . Iron, Antimony and Manganese in samples of soil and agricultural crops were extracted and their amount was determined using atomic absorption spectrometer. The spatial distribution map of the studied elements was developed using Kriging method. The main concentration of Fe, Sb and Mn in the soil of the study area is about 3.8%, 2.5 and 403 mg/kg, respectively. According to chemical partitioning studies, the anthropogenic share of Fe, Sb and Mn is about 28.51%, 34.83% and 30.35%, respectively. Results of comparison of heavy metals pollution intensity in the agricultural soil with geoaccumulation index and also pollution index, illustrated that iron and manganese are classified in the Non-polluted class and antimony is in the moderately polluted class. Analysis of zoning map of pollution index showed that Fe, Sb and Mn are of geological sources. In fact, these metals are naturally found in soil. However, anthropogenic activities have led to more accumulation of these metals in the soil. The obtained health risk for metals in agricultural crops is indicative of safe value for consumers.

Journal ArticleDOI
TL;DR: In this paper, the authors assessed the current status of solid waste management practices in India and identified the leading barriers are identified and Interpretive structural modeling technique and MICMAC analysis is performed to identify the contextual interrelationships between leading barriers influencing the solid waste to energy programs in the country.
Abstract: In recent years managing solid wastes has been one of the burning problems in front of state and local municipal authorities. This is mainly due to scarcity of lands for landfill sites. In this context experts suggest that conversion of solid waste to energy and useful component is the best approach to reduce space and public health related problems. The entire process has to be managed by technologies that prevent pollution and protect the environment and at the same time minimize the cost through recovery of energy. Energy recovery in the form of electricity, heat and fuel from the waste using different technologies is possible through a variety of processes, including incineration, gasification, pyrolysis and anaerobic digestion. These processes are often grouped under “Waste to Energy technologies”. The objective of the study is twofold. First authors assessed the current status of solid waste management practices in India. Secondly the leading barriers are identified and Interpretive structural modeling technique and MICMAC analysis is performed to identify the contextual interrelationships between leading barriers influencing the solid waste to energy programs in the country. Finally the conclusions are drawn which will assist policy makers in designing sustainable waste management programs.

Journal ArticleDOI
TL;DR: In this paper, a study of these critical pollution events showed a close correlation with the wind coming from the industrial site to the adjacent urban area, highlighting that the difference between windy days and no windy day’s concentrations reduces from 2012 to 2014 in industrial site.
Abstract: During the last years, several exceedances of PM10 and benzo(a)pyrene limit values exceedances were recorded in Taranto, a city in southern Italy included in so-called areas at high risk of environmental crisis because of the presence of a heavy industrial district including the largest steel factory in Europe. A study of these critical pollution events showed a close correlation with the wind coming from the industrial site to the adjacent urban area. During 2011, at monitoring sites closes to the industrial area, at least the 65% of PM10 exceedances were related to wind day conditions (characterized by at least 3 consecutive hours of wind coming from 270-360±2deg with an associated speed higher than 7 m/s). For this reason, in 2012 an integrated environmental permit and a regional air quality plan were enacted to reduce pollutant emissions from industrial plants. A study of PM10 levels registered during windy days was performed during critical episodes of pollution highlighting that the difference between windy days and no windy days’ concentrations reduces from 2012 to 2014 in industrial site. False negative events (verified ex-post by observed meteorological data) not identified by the forecast model - did not show a significant influence on PM concentration: PM10 values were comparable and sometimes lower than windy days levels. It is reasonable that the new scenario with a relevant reduction emissions form Ilva plant reduced the pollutants contribution from industrial area, contributing to PM10 levels decrease, also in false negative events.

Journal ArticleDOI
TL;DR: In this paper, a study was conducted to assess the possible risks induced by construction of Gavi Dam in Ilam Province; western part of Iran, using MIKE-11 model and technique for order of preference by similarity to ideal solution.
Abstract: The present study was conducted to assess the possible risks induced by construction of Gavi Dam in Ilam Province; western part of Iran, using MIKE-11 model and technique for order of preference by similarity to ideal solution. For this purpose, vulnerable zone of the dam site against the flooding risk of Gavi River was calculated for different return periods. The flooding zones were stimulated by MIKE-11 model. In order to check whether or not the dam construction could affect the quality of the Gavi River, the physicochemical quality of the river water was also tested. Afterwards, a questionnaire was prepared containing an inventory of possible risks supposed to be induced by construction of Gavi Dam. The questionnaires were placed at disposal of experts to score the items based on their importance. The questionnaires were then analyzed using SPSS Software, version 16. According to which, a total number of 12 risk factors were identified. The dam construction risks were qualitatively assessed by preliminary hazard analysis. Based on the results, 3 of 12 identified risks were recognized unacceptable. The shortlisted risks were prioritized at final step using technique for order of preference by similarity to ideal solution. "Habitat fragmentation" with a weight of 0.3002, "water pollution" with a weight of 0.295, and "impacts on aquatics" with a weight of 0.293 were identified as three top priority flooding risks. Among the most important corrective measures for mitigation of the risks at construction phase can be pointed to "restoration of the land cover", “conservation of areas surrounding the dam as a new wildlife habitat", “prevention of water contamination”, and "conservation of fish spawning sites".

Journal ArticleDOI
TL;DR: In this article, a risk assessment study was conducted to predict the expected hazardous influence on the ecosystem resulted from urbanization and industrialization activities at Helwan area, Egypt, and the obtained results showed that, the concentrations of organic contaminants in water streams and surrounding soils recorded high concentration values than the permissible limits, while inorganic elements were within the safe limits for irrigation.
Abstract: A risk assessment study was conducted topredict the expected hazardous influence on the ecosystem resulted from urbanization and industrialization activities at Helwan area, Egypt. To achieve these goals, soils, plants and water samples were collected from Helwan area, and their total concentrations of inorganic contaminants (Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and organic pollutants; such as Phenol and hydrocarbons were measured. The obtained results showed that, the concentrations of organic contaminants in water streams and surrounding soils recorded high concentration values than the permissible limits, while inorganic elements were within the safe limits for irrigation. In addition, soils irrigated with the effluents of industrial units recorded high values of inorganic and organic contaminants . Consequently, the levels of these contaminants were high in plant tissues grown thereon; especially the edible parts. Risk assessment based on available predicted no effect concentration values for the aquatic and terrestrial environment was performed. Inorganic elements were expected to cause serious hazard problems for both aquatic organisms and soil microorganisms. The impact of these pollutants on human health was calculated using daily metals intake of inorganic metals via consumption of edible plants. Hazard index values proved that concentrations of Cr may cause serious hazard problems for humans in this area; especially, children.