Institution

# Istituto Nazionale di Fisica Nucleare

Government•Rome, Italy•

About: Istituto Nazionale di Fisica Nucleare is a government organization based out in Rome, Italy. It is known for research contribution in the topics: Neutrino & Neutron. The organization has 16533 authors who have published 22674 publications receiving 565533 citations. The organization is also known as: INFN & National Institute for Nuclear Physics.

Topics: Neutrino, Neutron, Nucleon, Detector, Quantum chromodynamics

##### Papers published on a yearly basis

##### Papers

More filters

••

University of Genoa

^{1}, University of Manchester^{2}, KEK^{3}, CERN^{4}, Imperial College London^{5}, Stanford University^{6}, Tata Institute of Fundamental Research^{7}, Istituto Nazionale di Fisica Nucleare^{8}, University of Pittsburgh^{9}, Lyon College^{10}, TRIUMF^{11}, Northeastern University^{12}, Thomas Jefferson National Accelerator Facility^{13}, University of Córdoba (Spain)^{14}, Goethe University Frankfurt^{15}, University of Southampton^{16}, University of Udine^{17}, University of Alberta^{18}, Tokyo Metropolitan University^{19}, Helsinki Institute of Physics^{20}, National Research Nuclear University MEPhI^{21}, University of Bath^{22}, Niigata University^{23}, Naruto University of Education^{24}, Kobe University^{25}, University of Calabria^{26}, University of Trieste^{27}, European Space Agency^{28}, University of Birmingham^{29}, Ritsumeikan University^{30}, Qinetiq^{31}, École Polytechnique Fédérale de Lausanne^{32}, Massachusetts Institute of Technology^{33}, Brookhaven National Laboratory^{34}01 Jul 2003-Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment

TL;DR: The Gelfant 4 toolkit as discussed by the authors is a toolkit for simulating the passage of particles through matter, including a complete range of functionality including tracking, geometry, physics models and hits.

Abstract: G eant 4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics.

18,904 citations

••

Peter A. R. Ade

^{1}, Nabila Aghanim^{2}, Monique Arnaud^{3}, M. Ashdown^{4}+334 more•Institutions (82)TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.

Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

••

B. P. Abbott

^{1}, Richard J. Abbott^{1}, T. D. Abbott^{2}, Matthew Abernathy^{1}+1008 more•Institutions (96)TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.

Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations

••

TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations

••

Nabila Aghanim

^{1}, Yashar Akrami^{2}, Yashar Akrami^{3}, Yashar Akrami^{4}+229 more•Institutions (70)TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.

Abstract: We present cosmological parameter results from the ﬁnal full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to signiﬁcant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaﬀectthemonlyatthe05σlevelWeﬁndgoodconsistencywiththestandard spatially-ﬂat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% conﬁdence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterﬂuctuationamplitudeσ8 = 0811±0006 We ﬁnd no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeﬀectiveextrarelativisticdegreesoffreedomtobe Neﬀ = 299±017,inagreementwith the Standard Model prediction Neﬀ = 3046, and ﬁnd that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that aﬀect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaﬂatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We ﬁnd no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower ﬂuctuation amplitudes or matter density parameters), and in signiﬁcant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

##### Authors

Showing all 16559 results

Name | H-index | Papers | Citations |
---|---|---|---|

Giacomo Bruno | 158 | 1687 | 124368 |

Sabino Matarrese | 155 | 775 | 123278 |

M. Razzano | 155 | 515 | 106357 |

P. de Bernardis | 152 | 680 | 117804 |

Lorenzo Bianchini | 152 | 1516 | 106970 |

Alessandro Melchiorri | 151 | 674 | 116384 |

F. Piacentini | 149 | 531 | 108493 |

Fabio Finelli | 147 | 542 | 111128 |

Marco Costa | 146 | 1458 | 105096 |

Carlo Rovelli | 146 | 1502 | 103550 |

Marco Zanetti | 145 | 1439 | 104610 |

Carlo Burigana | 144 | 583 | 106492 |

Antonio Ereditato | 144 | 1448 | 97008 |

Francesco Longo | 142 | 745 | 89859 |

Tommaso Dorigo | 141 | 1806 | 104276 |