scispace - formally typeset
Search or ask a question

Showing papers in "Ground Water in 2004"


Journal ArticleDOI
TL;DR: A new and simple empirical method was used to relate fluxes obtained from minipiezometer data to streambed temperatures and a conceptual model for ground water/surface water interactions consisting of five different behaviors was developed based on the magnitude and direction of flux across the surface of the streambed.
Abstract: Streambed temperature mapping, hydraulic testing using minipiezometers, and geochemical analyses of interstitial water of the streambed were used to delineate the pattern of ground water discharge in a sandy streambed and to develop a flux-based conceptual model for ground water/surface water interactions. A new and simple empirical method was used to relate fluxes obtained from minipiezometer data to streambed temperatures. The relationship allowed flux to be calculated at locations where only streambed temperature measurements were made. Slug testing and potentiomanometer measurements at 34 piezometers indicated ground water discharge ranged from 0.03 to 446 L/m2/day (and possibly as high as 7060 L/m2/day) along a 60 m long by 11 to 14 m wide reach of river. Complex but similar plan-view patterns of flux were calculated for both summer and winter using hundreds of streambed temperatures measured on a 1 by 2 m grid. The reach was dominated by ground water discharge and 5% to 7% of the area accounted for ∼20% to 24% of the total discharge. < 12% of the total area consisted of recharge zones or no-discharge zones. A conceptual model for ground water/surface water interactions consisting of five different behaviors was developed based on the magnitude and direction of flux across the surface of the streambed. The behaviors include short-circuit discharge (e.g., high-flow springs), high discharge (e.g., preferential flowpaths), low to moderate discharge, no discharge (e.g., horizontal hyporheic or ground water flow), and recharge. Geological variations at depth played a key role in determining which type of flow behavior occurred in the streambed.

426 citations


Journal ArticleDOI
TL;DR: Hydrologists can contribute to sustainable water resources management by presenting the longer-term implications of ground water development as an integral part of their analyses.
Abstract: Safe-yield concepts historically focused attention on the economic and legal aspects of ground water development. Sustainability concerns have brought environmental aspects more to the forefront and have resulted in a more integrated outlook. Water resources sustainability is not a purely scientific concept, but rather a perspective that can frame scientific analysis. The evolving concept of sustainability presents a challenge to hydrologists to translate complex, and sometimes vague, socioeconomic and political questions into technical questions that can be quantified systematically. Hydrologists can contribute to sustainable water resources management by presenting the longer-term implications of ground water development as an integral part of their analyses.

316 citations


Journal ArticleDOI
TL;DR: MRS can be used for both predicting the yield of water supply wells and for interpolation between boreholes, thereby reducing the number of holes required for hydrogeological modeling.
Abstract: Magnetic resonance sounding (MRS) is distinguished from other geophysical tools used for ground water investigation by the fact that it measures a magnetic resonance signal generated directly from subsurface water molecules. An alternating current pulse energizes a wire loop on the ground surface and the MRS signal is generated; subsurface water is indicated, with a high degree of reliability, by nonzero amplitude readings. Measurements with varied pulse magnitudes then reveal the depth and thickness of water saturated layers. The hydraulic conductivity of aquifers can also be estimated using boreholes for calibration. MRS can be used for both predicting the yield of water supply wells and for interpolation between boreholes, thereby reducing the number of holes required for hydrogeological modeling. An example of the practical application of MRS combined with two-dimensional electrical imaging, in the Ker-bernez and Kerien catchments area of France, demonstrates the efficiency of the technique.

182 citations


Journal ArticleDOI
TL;DR: The seasonal changes in the water chemistry of individual sites were analyzed to better characterize the spatial variability of vertical hydraulic conductivity and the integrated result provides a method to characterize the hydrogeology of the watershed that fully utilizes traditional data.
Abstract: A methodology for characterizing the hydrogeology of watersheds using hydrochemical data that combine statistical, geochemical, and spatial techniques is presented. Surface water and ground water base flow and spring runoff samples (180 total) from a single watershed are first classified using hierarchical cluster analysis. The statistical clusters are analyzed for spatial coherence confirming that the clusters have a geological basis corresponding to topographic flowpaths and showing that the fractured rock aquifer behaves as an equivalent porous medium on the watershed scale. Then principal component analysis (PCA) is used to determine the sources of variation between parameters. PCA analysis shows that the variations within the dataset are related to variations in calcium, magnesium, SO4, and HCO3, which are derived from natural weathering reactions, and pH, NO3, and chlorine, which indicate anthropogenic impact. PHREEQC modeling is used to quantitatively describe the natural hydrochemical evolution for the watershed and aid in discrimination of samples that have an anthropogenic component. Finally, the seasonal changes in the water chemistry of individual sites were analyzed to better characterize the spatial variability of vertical hydraulic conductivity. The integrated result provides a method to characterize the hydrogeology of the watershed that fully utilizes traditional data.

143 citations


Journal ArticleDOI
TL;DR: Variations in pore water salinity were found to have a significant effect on poreWater velocities of the fresh water plume (two-dimensional), indicating the need to incorporate background salinities into the design process for MUS.
Abstract: Rhodamine water tracer (RWT) was used to characterize the migration of waste water within the saline subsurface of a marshland upwelling system (MUS), which is an alternative on-site waste water treatment system for coastal areas. Field tracer studies were performed to investigate the fresh waste water plume movement within the saline ground water. Pore velocities were calculated using first detection times and ranged from 0.68 to 10.7 x 10(-4) cm/sec for the loamy sandy soil matrix present at the site. Use of RWT in the field also allowed determination of main and preferential flowpaths. One- and two-dimensional laboratory experiments were performed using silica sand to investigate the interactions of the organically rich waste water with RWT within the zone surrounding the point of injection (one-dimensional) and the impact of background salinity on plume movement (two-dimensional). The results from these studies were used to help explain the field data. One-dimensional breakthrough curves revealed retardation factors for the RWT in the waste water mixture of 1.73 to 1.90. These results were similar to other researchers, indicating little interaction between the waste water and RWT. Variations in pore water salinity (5, 15, 25, and 35 ppt) were found to have a significant effect on pore water velocities of the fresh water plume (two-dimensional), indicating the need to incorporate background salinities into the design process for MUS.

127 citations


Journal ArticleDOI
TL;DR: The ESM was used to evaluate duration of seepage disturbance following meter installation and indicated natural seepages resumed approximately one hour following meter insertion in a sandy lakebed, indicating hydrologic processes are occurring in shallow lakebed settings at time scales that have largely gone unnoticed.
Abstract: A commercially available electromagnetic flowmeter is attached to a seepage cylinder to create an electromagnetic seepage meter (ESM) for automating measurement of fluxes across the sediment/water interface between ground water and surface water. The ESM is evaluated through its application at two lakes in New England, one where water seeps into the lake and one where water seeps out of the lake. The electromagnetic flowmeter replaces the seepage-meter bag and provides a continuous series of measurements from which temporal seepage processes can be investigated. It provides flow measurements over a range of three orders of magnitude, and contains no protruding components or moving parts. The ESM was used to evaluate duration of seepage disturbance following meter installation and indicated natural seepage rates resumed approximately one hour following meter insertion in a sandy lakebed. Lakebed seepage also varied considerably in response to lakebed disturbances, near-shore waves, and rainfalls, indicating hydrologic processes are occurring in shallow lakebed settings at time scales that have largely gone unobserved.

120 citations


Journal ArticleDOI
TL;DR: In this paper, aerial thermal infrared imaging along the southwestern margin of Delaware Bay indicated abundant ground water discharge at Cape Henlopen, Delaware, adjacent to the Atlantic Ocean, where low salinity in sedimentary pore waters within 20 m of the beachface that are associated with dense assemblages (in thousands per square meter) of a deep, burrow-dwelling polychaete worm, Marenzelleria viridis, otherwise regarded as a species characteristic of fresher, oligohaline conditions.
Abstract: Submarine ground water discharge to the ocean has the potential to create estuarine conditions near the point of discharge, thereby dramatically altering local benthic habitats and ecology. Aerial thermal infrared imaging along the southwestern margin of Delaware Bay indicated abundant discharge at Cape Henlopen, Delaware, adjacent to the Atlantic Ocean. On the sandflat there, we have documented low salinity in sedimentary pore waters within 20 m of the beachface that are associated with dense assemblages (in thousands per square meter) of a deep, burrow-dwelling polychaete worm, Marenzelleria viridis, otherwise regarded as a species characteristic of fresher, oligohaline conditions. Where present, M. viridis is a numerical and biomass dominant in a benthic community strikingly different from that in nearby nonseep locations. At Cape Henlopen, the ecological role of the ground water discharge appears to be a multifaceted one. Seeps are localized regions of significantly reduced salinity, stabilized temperature, increased nutrient flux, high microalgal abundance, and enhanced sediment stability. M. viridis feeds on sediment diatoms and may provide an important trophic linkage between microalgal growth fueled by nutrients associated with the discharging ground water and worm-feeding predators such as bottom fish or shorebirds common on the Cape Henlopen sandflat. Calculations based on our sampling suggest that nutrients supplied by the ground water substantially exceed what is needed to support benthic biomass and productivity estimated for this site.

109 citations


Journal ArticleDOI
TL;DR: A number of considerations that must be addressed in defining sustainable yield are pointed out in order to make the definition more useful in practical water resource planning studies.
Abstract: Ground water resource management programs are paying increasing attention to the integration of ground water and surface water in the planning process. Many plans, however, show a sophistication in approach and presentation that masks a fundamental weakness in the overall analysis. The plans usually discuss issues of demand and yield, yet never directly address a fundamental issue behind the plan—how to define sustainable yield of an aquifer system. This paper points out a number of considerations that must be addressed in defining sustainable yield in order to make the definition more useful in practical water resource planning studies. These include consideration for the spatial and temporal aspects of the problem, the development of a conceptual water balance, the influence of boundaries and changes in technology on the definition, the need to examine water demand as well as available supply, the need for stakeholder involvement, and the issue of uncertainty in our understanding of the components of the hydrologic system.

106 citations


Journal ArticleDOI
TL;DR: The utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions is demonstrated and suggests that waters in carbonate or carbonate-cemented aquifers acquire their strontum isotope composition very quickly--on the order of decades.
Abstract: 87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly--on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions.

99 citations


Journal ArticleDOI
TL;DR: It is demonstrated that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.
Abstract: Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

99 citations


Journal ArticleDOI
TL;DR: The ratios, which resulted from screening approximately 165 analyses of water from 32 locations in 24 states in the United States, show a distinct geographic variation with highest values near the coast and trending toward a value of approximately 50 in the continental interior.
Abstract: Concentrations of bromide in potable ground water that has <10 mg/L chloride range from 0.0032 to 0.058 mg/L with a median value of 0.016 mg/L. The chloride/bromide mass ratio for the same water ranges from 43 to 285 with a median value of 101. The ratios, which resulted from screening approximately 165 analyses of water from 32 locations in 24 states in the United States, show a distinct geographic variation with highest values near the coast and trending toward a value of approximately 50 in the continental interior.

Journal ArticleDOI
TL;DR: In this article, the authors used a tow multichannel cable system to conduct nearly 300 km of streamer resistivity surveys in coastal bays of the Delmarva Peninsula (Delaware, Maryland, and Virginia).
Abstract: Fresh ground water is widely distributed in subsurface sediments below the coastal bays of the Delmarva Peninsula (Delaware, Maryland, and Virginia). These conditions were revealed by nearly 300 km of streamer resistivity surveys, utilizing a towed multichannel cable system. Zones of high resistivity displayed by inversion modeling were confirmed by vibradrilling investigations to correspond to fresh ground water occurrences. Fresh water lenses extended from a few hundred meters up to 2 km from shore. Along the western margins of coastal bays in areas associated with fine-grained surficial sediments, high-resistivity layers were widespread and were especially pronounced near tidal creeks. Fresh ground water layers were less common along the eastern barrier-bar margins of the bays, where sediments were typically sandy. Mid-bay areas in Chincoteague Bay, Maryland, did not show evidence of fresh water. Indian River Bay, Delaware, showed complex subsurface salinity relationships, including an area with possible hypersaline brines. The new streamer resistivity system paired with vibradrilling in these investigations provides a powerful approach to recovering information required for extension of hydrologic modeling of shallow coastal aquifer systems into offshore areas.

Journal ArticleDOI
TL;DR: The transport of herbicide compounds to ground water is substantially underestimated when herbicide degradates are not considered, and a temporal pattern inAlachlor concentrations in ground water could only be identified when alachlor degradate were considered.
Abstract: Since 1995, a network of municipal wells in Iowa, representing all major aquifer types (alluvial, bedrock/karst region, glacial drift, bedrock/nonkarst region), has been repeatedly sampled for a broad suite of herbicide compounds yielding one of the most comprehensive statewide databases of such compounds currently available in the United States. This dataset is ideal for documenting the insight that herbicide degradates provide to the spatial and temporal distribution of herbicides in ground water. During 2001, 86 municipal wells in Iowa were sampled and analyzed for 21 herbicide parent compounds and 24 herbicide degradates. The frequency of detection increased from 17% when only herbicide parent compounds were considered to 53% when both herbicide parents and degradates were considered. Thus, the transport of herbicide compounds to ground water is substantially underestimated when herbicide degradates are not considered. A significant difference in the results among the major aquifer types was apparent only when both herbicide parent compounds and their degradates were considered. In addition, including herbicide degradates greatly improved the statistical relation to the age of the water being sampled. When herbicide parent compounds are considered, only 40% of the wells lacking a herbicide detection could be explained by the age of the water predating herbicide use. However, when herbicide degradates were also considered, 80% of the ground water samples lacking a detection could be explained by the age of the water predating herbicide use. Finally, a temporal pattern in alachlor concentrations in ground water could only be identified when alachlor degradates were considered.

Journal ArticleDOI
TL;DR: The aim of this study was to investigate the ground water transport behavior of the pharmaceuticals clofibric acid, propyphenazone, and diclofenac with a laboratory soil column experiment, and concludes that the concentration distribution of the Pharmaceuticals at the bank filtration site at Lake Tegel is controlled by sorption, desorption, and input variation, rather than by degradation.
Abstract: Occurrences of pharmaceutically active compounds in surface water and sewage water have been widely reported. Investigations show the presence of several classes of pharmaceuticals such as antirheumatics (e.g., diclofenac), analgesics (e.g., propyphenazone), and blood lipid regulators (clofibric acid), even in ground water. Compared to their occurrences in surface water, however, the reported incidences of drugs in ground water are much rarer. This may be due to the input, but also to transport processes and degradation in the aquifer. In field studies investigating ground water sampled at a bank infiltration site at Lake Tegel, Berlin, Germany, clofibric acid was found at concentrations up to 290 ng/L, and propyphenazone up to 250 ng/L, whereas concentrations of diclofenac were around the detection limit. The aim of this study was to investigate the ground water transport behavior of the pharmaceuticals clofibric acid, propyphenazone, and diclofenac with a laboratory soil column experiment. Results show that clofibric acid exhibits no degradation and almost no retardation (R f = 1.1). Diclofenac (R f = 2.0) and propyphenazone (R f = 1.6) are retarded, whereas significant degradation was not observed for both pharmaceuticals under the prevailing conditions in the soil column. We conclude that the concentration distribution of the pharmaceuticals at the bank filtration site at Lake Tegel is controlled by sorption, desorption, and input variation, rather than by degradation.

Journal ArticleDOI
TL;DR: In this paper, a detailed study of shoreline discharge from an unconfined aquifer at two sites in an embayment on the Cape Cod, Massachusetts, coastline provides insight into the highly dynamic spatial and temporal nature of discharge along sandy beaches.
Abstract: Tidal fluctuations along the salt water boundary of a sandy beach affect the magnitude, location, timing, and salinity of both subaerial and submarine ground water discharge. Detailed studies of shoreline discharge from an unconfined aquifer at two sites in an embayment on the Cape Cod, Massachusetts, coastline provide insight into the highly dynamic spatial and temporal nature of discharge along sandy beaches affected by the tide. The constantly moving tidal boundary over a sloping beach results in a shoreline-perpendicular discharge zone of 10 to 20 m, with ~35% to 55% of the discharge being submarine discharge. The distribution of fresh ground water through a beach face varies greatly, depending primarily on the tidal cycle and range, the heterogeneous characteristics of the beach sediments, and the beach geometry. The estimated relative volume of discharge varies temporally with tidal fluctuations, with the greatest discharge occurring during early to mid ebbing tide and location of greatest estimated discharge moving seaward during ebbing tide. This is determined using net hydraulic head calculations in monitoring wells set in a shoreline-perpendicular transect in the beach. The salinity of discharge varies temporally from near fresh water values of 1 part per thousand (ppt) to near coastal salt water values of 30 ppt, being saltiest at the start of discharge as the tide ebbs and freshest during a low tide period of ~2 h. Of the discharge volume, ~65% to 85% is estimated to be from salt water that infiltrates during high tide episodes. This study highlights the complexity of the dynamic coastal ground water discharge phenomenon and provides insight into the hydraulic mechanisms involved. While there is a general pattern to sandy beach discharge, comparison of results from beaches studied at Cape Cod indicates that the temporal and spatial details of the discharge is very site-specific.

Journal ArticleDOI
TL;DR: A distributed parameter model is shown to meet the stated needs of management of ground water resources and reproduces total annual discharge and recharge to within 9% and 10%, respectively, indicating the process can also be used to calculate recharge in ungauged watersheds.
Abstract: Management of ground water resources requires a method to calculate demonstrably accurate recharge rates at local to regional scales using readily available information bases. Many methods are available to calculate recharge, but most are unable to satisfy all these conditions. A distributed parameter model is shown to meet the stated needs. Such models are input intensive, however, so a procedure to define most inputs from GIS and hydrogeological sources is presented. It simplifies the PRMS calibration observed streamflow hydrographs by reducing degrees of freedom from dozens to four. For seven watersheds (60 to 500 km2), the GIS-aided calibrations have average errors of 5% on recharge and 2% on total streamflow, verifying the accuracy of the process. Recharge is also calculated for 63 local-scale subwatersheds (average size 37 km2). For the study area, calculated recharges average 11 cm/yr. Soil and rock conductivity, porosity, and depth to the water table are shown to be the physical properties which dominate the spatial variability of recharge. The model has been extended to uncalibrated watersheds where GIS and climatic information are known. It reproduces total annual discharge and recharge to within 9% and 10%, respectively, indicating the process can also be used to calculate recharge in ungauged watersheds. It has not been tested outside the study area, however.

Journal ArticleDOI
TL;DR: World scale maps providing guidelines on spatial variability of signal and noise are presented and their importance with respect to the MRS survey results is discussed.
Abstract: The advantage of magnetic resonance sounding (MRS) as compared to other classical geophysical methods is in its water selective approach and reduced ambiguity in determination of subsurface free water content and hydraulic properties of the media due to the nuclear magnetic resonance (NMR) principle applied. Two case examples are used to explain how hydrogeological parameters are obtained from an MRS survey. The first case example in Delft (the Netherlands) is a multiaquifer system characterized by large signal to noise ratio (S/N = 73), with a 24 m thick, shallow sand aquifer, confined by a 15 m thick clay layer. For the shallow aquifer, a very good match between MRS and borehole data was obtained with regard to effective porosity n(e) approximately 28% and specific drainage S(d) approximately 20%. The MRS interpretation at the level deeper than 39 m was disturbed by signal attenuation in the low resistivity (approximately 10 omega(m)) media. The second case of Serowe (Botswana) shows a fractured sandstone aquifer where hydrogeological parameters are well defined at depth > 74 m below ground surface despite quite a low S/N = 0.9 ratio, thanks to the negligible signal attenuation in the resistive environment. Finally, capabilities and limitations of the MRS technology are reviewed and discussed. MRS can contribute to subsurface hydrostratigraphy description, hydrogeological system parameterization, and improvement of well siting. The main limitations are survey dependence upon the value of the S/N ratio, signal attenuation in electrically conductive environments, nonuniformity of magnetic field, and some instrumental limitations. At locations sufficiently resistive to disregard the signal attenuation problems, the MRS S/N ratio determines how successfully MRS data can be acquired. Both signal and noise vary spatially; therefore, world scale maps providing guidelines on spatial variability of signal and noise are presented and their importance with respect to the MRS survey results is discussed. The noise varies also temporally; therefore, its diurnal and seasonal variability impact upon the MRS survey is covered as well.

Journal ArticleDOI
TL;DR: Geochemical and isotopic data from an experimental ASR site located in a karstic, confined carbonate aquifer in South Australia show that substantial CO2(aq) is produced by oxidation of organic matter associated with injectant.
Abstract: A key factor in the long-term viability of aquifer storage recovery (ASR) is the extent of mineral solution interaction between two dissimilar water types and consequent impact on water quality and aquifer stability. We collected geochemical and isotopic data from three observation wells located 25, 65, and 325 m from an injection well at an experimental ASR site located in a karstic, confined carbonate aquifer in South Australia. The experiment involved five major injection cycles of a total of 2.5 x 10(5) m3 of storm water (total dissolved solids [TDS] approximately 150 mg/L) into the brackish (TDS approximately 2400 mg/L) aquifer. Approximately 60% of the mixture was pumped out during the fifth year of the experiment. The major effect on water quality within a 25 m radius of the injection well following injection of storm water was carbonate dissolution (35 +/- 6 g of CaCO3 dissolved/m3 of aquifer) and sulfide mineral oxidation (50 +/- 10 g as FeS2/m3 after one injection). < 0.005% of the total aquifer carbonate matrix was dissolved during each injection event, and approximately 0.2% of the total reduced sulfur. Increasing amounts of ambient ground water was entrained into the injected mixture during each of the storage periods. High 14C(DIC) activities and slightly more negative delta13C(DIC) values measured immediately after injection events show that substantial CO2(aq) is produced by oxidation of organic matter associated with injectant. There were no detectable geochemical reactions while pumping during the recovery phase in the fifth year of the experiment.

Journal ArticleDOI
TL;DR: This methodology applied to the complex heterogeneity within a regional system of buried valley aquifers, which occurs in the western glaciated plains of North America and includes the Spiritwood Aquifer, to create interconnectivity above that which would occur if the higher-permeability facies were randomly placed.
Abstract: A number of methods involving indicator geostatistics were combined in a methodology for characterizing and modeling multiscale heterogeneity. The methodology circumvents sources of bias common in data from borehole logs. We applied this methodology to the complex heterogeneity within a regional system of buried valley aquifers, which occurs in the western glaciated plains of North America and includes the Spiritwood Aquifer. The region is conceptualized as having a hierarchical organization with three facies assemblage types (large-scale heterogeneity) and two facies types within each assemblage (small-scale heterogeneity). We statistically characterized the sedimentary architecture at both scales, formulated indicator correlation models from those characterizations, and used the models to simulate the architecture in a multiscale realization. We focused on the interconnectivity of units creating higher-permeability pathways. Higher-permeability pathways span the realization even though the proportion of higher-permeability facies is less than the percolation threshold. Thus, geologic structures as represented in the indicator correlation models create interconnectivity above that which would occur if the higher-permeability facies were randomly placed. This amount of interconnection among higher-permeability facies within the multiscale realization is consistent with that suggested in prior hydraulic and geochemical studies of the regional system.

Journal ArticleDOI
TL;DR: In this article, field studies were conducted at three coastal plain sites to characterize inorganic nutrient and fecal coliform bacteria ground water quality and intertidal sediment nutrient fluxes under the influence of residential septic tank effluent.
Abstract: Field studies were conducted at three coastal plain sites to characterize inorganic nutrient and fecal coliform bacteria ground water quality and intertidal sediment nutrient fluxes under the influence of residential septic tank effluent. Mean drainfield DIP (dissolved inorganic phosphorus) and DIN (dissolved inorganic nitrogen) concentrations varied between 294 to 336 and 4494 to 5391 μmol/L, respectively, with mean fecal coliform bacteria densities ranging from 105.04 to 106.29 MPN (most probable number) /100 mL. DIP and fecal coliform bacteria exhibited a high degree of attenuation with shoreline concentrations at or near background levels. In contrast, septic tank nitrogen loadings to shallow ground water were significant and resulted in mean shoreline DIN concentrations ∼50 to 100 times greater than adjacent surface water concentrations. Mean site sediment DIP and DIN flux to surface waters varied from 1.1 to 1.6 and 52 to 135 μmol/m2/hr, respectively. Whereas DIP sediment fluxes were similar to reported values for sites adjacent to forested and agricultural lands, DIN fluxes were elevated compared to forested lands and near the lower end of the range reported for agricultural lands within the southern Chesapeake Bay region. Maximum measured sediment DIN flux was 1514 μmol/m2/hr. Estimated waste water nitrogen loading to shallow ground water (5.7 to 10.7 kg/household/yr) was significant and with 0.5 to 1 acre lot sizes, comparable to water table nitrogen loadings from dominant row-crop land use in the mid-Atlantic Coastal Plain. Given the trends in population growth in the Chesapeake Bay watershed and other coastal regions, nitrogen loads from septic tanks to these systems should also be expected to increase.

Journal ArticleDOI
TL;DR: A new concept of minimum resistivity for ground water-bearing zones, which is the optimum value of resistivity of a subsurface formation in an area below which ground water contained in it is saline/brackish and unsuitable for drinking, is presented.
Abstract: Surface geophysical surveys provide an effective way to image the subsurface and the ground water zone without a large number of observation wells. DC resistivity sounding generally identifies the subsurface formations—the aquifer zone as well as the formations saturated with saline/brackish water. However, the method has serious ambiguities in distinguishing the geological formations of similar resistivities such as saline sand and saline clay, or water quality such as fresh or saline, in a low resistivity formation. In order to minimize the ambiguity and ascertain the efficacy of data integration techniques in ground water and saline contamination studies, a combined geophysical survey and periodic chemical analysis of ground water were carried out employing DC resistivity profiling, resistivity sounding, and shallow seismic refraction methods. By constraining resistivity interpretation with inputs from seismic refraction and chemical analysis, the data integration study proved to be a powerful method for identification of the subsurface formations, ground water zones, the subsurface saline/brackish water zones, and the probable mode and cause of saline water intrusion in an inland aquifer. A case study presented here illustrates these principles. Resistivity sounding alone had earlier failed to identify the different formations in the saline environment. Data integration and resistivity interpretation constrained by water quality analysis led to a new concept of minimum resistivity for ground water-bearing zones, which is the optimum value of resistivity of a subsurface formation in an area below which ground water contained in it is saline/brackish and unsuitable for drinking.

Journal ArticleDOI
TL;DR: Ground water flow was imaged with time scales on the order of weeks to decades by combining stable isotopes of water, tritium/helium-3 (T/3He) dating, and deliberate gas tracer experiments, which demonstrated that mean horizontal ground water velocities range from < 1 to > 4 km/year.
Abstract: Critical for the management of artificial recharge operations is detailed knowledge of ground water dynamics near spreading areas. Geochemical tracer techniques including stable isotopes of water, tritium/helium-3 (T/3He) dating, and deliberate gas tracer experiments are ideally suited for these investigations. These tracers were used to evaluate flow near an artificial recharge site in northern Orange County, California, where approximately 2.5 x 10(8) m3 (200,000 acre-feet) of water are recharged annually. T/3He ages show that most of the relatively shallow ground water within 3 km of the recharge facilities have apparent ages 20 years at approximately 6 km. Gas tracer experiments using sulfur hexafluoride and xenon isotopes were conducted from the Santa Ana River and two spreading basins. These tracers were followed in the ground water for more than two years, allowing subsurface flow patterns and flow times to be quantified. Results demonstrate that mean horizontal ground water velocities range from 4 km/year. The leading edges of the tracer patch moved at velocities about twice as fast as the center of mass. Leading edge velocities are important when considering the potential transport of microbes and other "time sensitive" contaminants and cannot be determined easily with other methods. T/3He apparent ages and tracer travel times agreed within the analytical uncertainty at 16 of 19 narrow screened monitoring wells. By combining these techniques, ground water flow was imaged with time scales on the order of weeks to decades.

Journal ArticleDOI
TL;DR: Quantile kriging was the most robust of the interpolation methods, showing the least bias from both of these factors and providing guidance to practitioners balancing opposing theoretical perspectives, ease-of-implementation, and effectiveness when choosing a plume interpolation method.
Abstract: Plume interpolation consists of estimating contaminant concentrations at unsampled locations using the available contaminant data surrounding those locations. The goal of ground water plume interpolation is to maximize the accuracy in estimating the spatial distribution of the contaminant plume given the data limitations associated with sparse monitoring networks with irregular geometries. Beyond data limitations, contaminant plume interpolation is a difficult task because contaminant concentration fields are highly heterogeneous, anisotropic, and nonstationary phenomena. This study provides a comprehensive performance analysis of six interpolation methods for scatter-point concentration data, ranging in complexity from intrinsic kriging based on intrinsic random function theory to a traditional implementation of inverse-distance weighting. High resolution simulation data of perchloroethylene (PCE) contamination in a highly heterogeneous alluvial aquifer were used to generate three test cases, which vary in the size and complexity of their contaminant plumes as well as the number of data available to support interpolation. Overall, the variability of PCE samples and preferential sampling controlled how well each of the interpolation schemes performed. Quantile kriging was the most robust of the interpolation methods, showing the least bias from both of these factors. This study provides guidance to practitioners balancing opposing theoretical perspectives, ease-of-implementation, and effectiveness when choosing a plume interpolation method.

Journal ArticleDOI
TL;DR: In this paper, the authors report estimates of ground water recharge and discharge at 15 sites in the Everglades Nutrient Removal Project and in Water Conservation Area 2A (WCA•2A), along with measurements of hydraulic properties of peat at 11 sites.
Abstract: Rates of ground water recharge and discharge are not well known in the central Everglades. Here we report estimates of ground water recharge and discharge at 15 sites in the Everglades Nutrient Removal Project and in Water Conservation Area 2A (WCA‐2A), along with measurements of hydraulic properties of peat at 11 sites. A simple hydrogeologic simulation was used to assess how specific factors have influenced recharge and discharge. Simulations and measurements agreed that the highest values of recharge and discharge occur within 600 m of levees, the result of ground water flow beneath levees. There was disagreement in the interior wetlands of WCA‐2A (located > 1000 m from levees) where measurements of recharge and discharge were substantially higher than simulated fluxes. A five-year time series (1997 to 2002) of measured fluxes indicated that recharge and discharge underwent reversals in direction on weekly, monthly, and annual timescales at interior sites in WCA‐2A. Ground water discharge tended to occur during average to moderately dry conditions when local surface water levels were decreasing. Recharge tended to occur during moderately wet periods or during very dry periods just as water levels began to increase following precipitation or in response to a pulse of surface water released from water-control structures by water managers. Discharge also tended to occur at sites in the wetland interior for ~1 week preceding the arrival of the surface water pulse. We conclude that ground water recharge and discharge vary cyclically in the interior wetlands of the central Everglades, driven by the differential responses of surface water and ground water to annual, seasonal, and weekly trends in precipitation and operation of water-control structures.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the temporal and spatial variations of Cl ‐ concentration profiles in the upper 230 cm of pore waters and measured directly by seepage meters.
Abstract: Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl ‐ concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ~70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ~70 cmbsf. Cl ‐ profiles indicate average linear velocities of ~0.014 cm/d at depths > ~70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ~70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

Journal ArticleDOI
TL;DR: Based on the correlation between discharge and E2 concentration, aquatic organisms living in the plateau or in its discharged waters, including the threatened southern cavefish T. subterraneus, are exposed to concentration of E2 above 25 ng/L approximately 60% of the time, which implies that organismsliving in karst basins throughout the OPA are likely exposed to E2 concentrations that may adversely impact their reproductive success for a significant portion of each year.
Abstract: Adverse impacts on the health of some fish populations, such as skewed sex distributions, have been noted in surface waters and in laboratory experiments with relatively low concentrations (above 25 ng/L) of natural estrogen (17 beta-estradiol--E2). Sources of E2 to surface and ground waters can include avian, human, and mammalian waste products. The Ozark Plateau Aquifer (OPA) is a karstic basin that receives a significant portion of its water through losing reaches of rivers. Thus, there is a direct connection between surface water and ground water. The OPA was targeted for an E2 study to assess the potential for adverse health effects to aquatic organisms living in the system. Eight springs, which drain the aquifer, were sampled quarterly. The concentrations of E2 in the OPA ranged from 13 to 80 ng/L. For any one sampling event, the concentrations of E2 at the spring waters were statistically similar; however, the concentrations of E2 at all springs varied throughout the year. At Maramec Spring, one of the larger springs, the E2 concentration, was correlated with discharge. Based on the correlation between discharge and E2 concentration, aquatic organisms living in the plateau or in its discharged waters, including the threatened southern cavefish T. subterraneus, are exposed to concentration of E2 above 25 ng/L approximately 60% of the time. This implies that organisms living in karst basins throughout the OPA are likely exposed to E2 concentrations that may adversely impact their reproductive success for a significant portion of each year.

Journal ArticleDOI
TL;DR: The use of temperature as a tracer allows determination of residence times and velocities through the conduit system, and a calculation of local denudation is larger than other regional estimates, perhaps reflecting return of water to conduits before calcite equilibrium is reached.
Abstract: Exchange of water between conduits and matrix is an important control on regional chemical compositions, karstification, and quality of ground water resources in karst aquifers. A sinking stream (Santa Fe River Sink) and its resurgence (River Rise) in the unconfined portion of the Floridan Aquifer provide the opportunity to monitor conduit inflow and outflow. The use of temperature as a tracer allows determination of residence times and velocities through the conduit system. Based on temperature records from two high water events, flow is reasonably represented as pipe flow with a cross-sectional area of 380 m 2 , although this model may be complicated by losses of water from the conduit system at higher discharge rates. Over the course of the study year, the River Rise discharged a total of 1.9 × 10 7 m 3 more water than entered the River Sink, reflecting net contribution of ground water from the matrix into the conduit system. However, as River Sink discharge rates peaked following three rainfall events during the study period, the conduit system lost water, presumably into the matrix. Surface water in high flow events is typically undersaturated with respect to calcite and thus may lead to dissolution, depending on its residence time in the matrix. A calculation of local denudation is larger than other regional estimates, perhaps reflecting return of water to conduits before calcite equilibrium is reached. The exchange of matrix and conduit water is an important variable in karst hydrology that should be considered in management of these water resources.

Journal ArticleDOI
TL;DR: In this paper, the authors found that both measurements and model results are reasonable and that the difference between estimates apparently results from the sources of water being measured and not the techniques themselves, and they found seepage meter rates similar to rates calculated from the geochemical tracers 222 Rn and 226 Ra.
Abstract: Ground water sources can be a significant portion of a local water budget in estuarine environments, particularly in areas with high recharge rates, transmissive aquifers, and permeable marine sediments. However, field measurements of ground water discharge are often incongruent with ground water flow modeling results, leaving many scientists unsure which estimates are accurate. In this study, we find that both measurements and model results are reasonable. The difference between estimates apparently results from the sources of water being measured and not the techniques themselves. In two locations in the Indian River Lagoon estuarine system, we found seepage meter rates similar to rates calculated from the geochemical tracers 222 Rn and 226 Ra. Ground water discharge rates ranged from 4 to 9 cm/d using seepage meters and 3 to 20 cm/d using 222 Rn and 226 Ra. In contrast, in comparisons to other studies where finite element ground water flow modeling was used, much lower ground water discharge rates of ~0.05 to 0.15 cm/d were estimated. These low rates probably represent discharge of meteoric ground water from landrecharged aquifers, while the much higher rates measured with seepage meters, 222 Rn, and 226 Ra likely include an additional source of surface waters that regularly flush shallow (< 1 m depth) sediments. This resultant total flow of mixed land-recharged water and recirculated surface waters contributes to the total biogeochemical loading in this shallow estuarine environment.

Journal ArticleDOI
TL;DR: The cumulative rainfall departure (CRD) from normal rainfall is a concept sometimes utilized to evaluate the temporal correlation of rainfall with surface water or ground water levels, but can be misapplied if extended over lengthy periods.
Abstract: Evaluation of trends in time-series, such as precipitation or ground water levels, is an essential element in many hydrologic evaluations, including water resource studies and planning efforts. The cumulative rainfall departure (CRD) from normal rainfall is a concept sometimes utilized to evaluate the temporal correlation of rainfall with surface water or ground water levels. Permutations of the concept have been used to estimate recharge or aquifer storativity, and in attempts to explain declining ground water levels. The cumulative departure concept has hydrologic meaning in the short term, as a generalized evaluation of either meager or abundant rainfall, and when utilized in connection with a detailed water budget analysis can be used in a predictive fashion. However, the concept can be misapplied if extended over lengthy periods. Misapplication occurs because of several factors including the separation of the mean and median in nonnormal distributions, how the choice of beginning and end points of the data can affect the results, the lack of consideration that above-average rainfall can reset the hydrologic system without mathematically eliminating the accumulated deficit, and the lack of support for the necessary inference that rainfall events and hydrologic levels widely separated in time are linked. Standard statistical techniques are available to reliably determine trends and can provide rigorous statistical measures of the significance of conclusions. Misuse of the CRD concept can lead to erroneous and unsupported conclusions regarding hydrologic relationships and can potentially result in misguided water resource decision-making.

Journal ArticleDOI
TL;DR: This is the first study to establish a correlation between the rate of abiotic degradation on Fe(0) and the extent of isotopic fractionation, and the first to confirm consistent differences in these two parameters as a function of iron type.
Abstract: Four samples of two commercially available iron brands used as substrate for iron permeable reactive barriers (PRBs) were tested for suitability for remediation of perchloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cDCE) and vinyl chloride (VC). Kinetic studies indicate that rates of reaction are enhanced for cDCE and VC on Connelly iron (2.8 x 10(-4) to 6.9 x 10(-4) L/m2/hr and 2.0 x 10(-4) to 9.0 x 10(-4) L/m2/hr, for cDCE and VC, respectively) vs. Peerless iron (3.1 x 10(-5) to 4.6 x 10(-5) L/m2/hr and 2.4 x 10(-5) to 4.1 x 10(-5) L/m2/hr, for cDCE and VC, respectively). Carbon isotopic analyses of the residual chlorinated ethylene (CE) during degradation indicate significant fractionation occurs during reductive dechlorination, with, for example, up to 70% enrichment in carbon isotopic values observed when VC is more than 99% degraded. Comparison of fractionation factors (epsilon) indicates significant differences in carbon isotopic fractionation for different iron types and for different CEs. For the lower CEs (cDCE and VC) in particular, both slower reaction rates and larger fractionation are observed for degradation on Peerless vs. Connelly iron. This is the first study to establish a correlation between the rate of abiotic degradation on Fe(0) and the extent of isotopic fractionation, and the first to confirm consistent differences in these two parameters as a function of iron type. The possibility that these differences in kinetics and carbon isotopic fractionation for cDCE and VC are related to differences in branching ratios between competing hydrogenolysis and beta-elimination reactions during reductive dechlorination on the iron surfaces is discussed.