scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Medical Imaging in 2009"


Journal ArticleDOI
TL;DR: A comparison study between 10 automatic and six interactive methods for liver segmentation from contrast-enhanced CT images provides an insight in performance of different segmentation approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.
Abstract: This paper presents a comparison study between 10 automatic and six interactive methods for liver segmentation from contrast-enhanced CT images. It is based on results from the "MICCAI 2007 Grand Challenge" workshop, where 16 teams evaluated their algorithms on a common database. A collection of 20 clinical images with reference segmentations was provided to train and tune algorithms in advance. Participants were also allowed to use additional proprietary training data for that purpose. All teams then had to apply their methods to 10 test datasets and submit the obtained results. Employed algorithms include statistical shape models, atlas registration, level-sets, graph-cuts and rule-based systems. All results were compared to reference segmentations five error measures that highlight different aspects of segmentation accuracy. All measures were combined according to a specific scoring system relating the obtained values to human expert variability. In general, interactive methods reached higher average scores than automatic approaches and featured a better consistency of segmentation quality. However, the best automatic methods (mainly based on statistical shape models with some additional free deformation) could compete well on the majority of test images. The study provides an insight in performance of different segmentation approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.

979 citations


Journal ArticleDOI
TL;DR: An integral concept for tractography to describe crossing and splitting fibre bundles based on the fibre orientation distribution function (ODF) estimated from high angular resolution diffusion imaging (HARDI) is proposed and new deterministic and new probabilistic tractography algorithms using the full multidirectional information obtained through use of the fibre ODF are developed.
Abstract: We propose an integral concept for tractography to describe crossing and splitting fibre bundles based on the fibre orientation distribution function (ODF) estimated from high angular resolution diffusion imaging (HARDI). We show that in order to perform accurate probabilistic tractography, one needs to use a fibre ODF estimation and not the diffusion ODF. We use a new fibre ODF estimation obtained from a sharpening deconvolution transform (SDT) of the diffusion ODF reconstructed from q-ball imaging (QBI). This SDT provides new insight into the relationship between the HARDI signal, the diffusion ODF, and the fibre ODF. We demonstrate that the SDT agrees with classical spherical deconvolution and improves the angular resolution of QBI. Another important contribution of this paper is the development of new deterministic and new probabilistic tractography algorithms using the full multidirectional information obtained through use of the fibre ODF. An extensive comparison study is performed on human brain datasets comparing our new deterministic and probabilistic tracking algorithms in complex fibre crossing regions. Finally, as an application of our new probabilistic tracking, we quantify the reconstruction of transcallosal fibres intersecting with the corona radiata and the superior longitudinal fasciculus in a group of eight subjects. Most current diffusion tensor imaging (DTI)-based methods neglect these fibres, which might lead to incorrect interpretations of brain functions.

670 citations


Journal ArticleDOI
TL;DR: A graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentations of 3- D spectral OCT image data is reported.
Abstract: With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 plusmn 2.41 mum was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 plusmn 1.98 mum.

618 citations


Journal ArticleDOI
TL;DR: It is shown that local combination strategies outperform global methods in segmenting high-contrast structures, while global techniques are less sensitive to noise when contrast between neighboring structures is low.
Abstract: It has been shown that employing multiple atlas images improves segmentation accuracy in atlas-based medical image segmentation. Each atlas image is registered to the target image independently and the calculated transformation is applied to the segmentation of the atlas image to obtain a segmented version of the target image. Several independent candidate segmentations result from the process, which must be somehow combined into a single final segmentation. Majority voting is the generally used rule to fuse the segmentations, but more sophisticated methods have also been proposed. In this paper, we show that the use of global weights to ponderate candidate segmentations has a major limitation. As a means to improve segmentation accuracy, we propose the generalized local weighting voting method. Namely, the fusion weights adapt voxel-by-voxel according to a local estimation of segmentation performance. Using digital phantoms and MR images of the human brain, we demonstrate that the performance of each combination technique depends on the gray level contrast characteristics of the segmented region, and that no fusion method yields better results than the others for all the regions. In particular, we show that local combination strategies outperform global methods in segmenting high-contrast structures, while global techniques are less sensitive to noise when contrast between neighboring structures is low. We conclude that, in order to achieve the highest overall segmentation accuracy, the best combination method for each particular structure must be selected.

546 citations


Journal ArticleDOI
TL;DR: A generalization of the CS paradigm based on homotopic approximation of the lscr0 quasi-norm is proposed and how MR image reconstruction can be pushed even further below the Nyquist limit and significantly closer to the theoretical bound is shown.
Abstract: In clinical magnetic resonance imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. Following recent developments in compressive sensing (CS) theory, several authors have demonstrated that certain classes of MR images which possess sparse representations in some transform domain can be accurately reconstructed from very highly undersampled K-space data by solving a convex lscr1-minimization problem. Although lscr1-based techniques are extremely powerful, they inherently require a degree of over-sampling above the theoretical minimum sampling rate to guarantee that exact reconstruction can be achieved. In this paper, we propose a generalization of the CS paradigm based on homotopic approximation of the lscr0 quasi-norm and show how MR image reconstruction can be pushed even further below the Nyquist limit and significantly closer to the theoretical bound. Following a brief review of standard CS methods and the developed theoretical extensions, several example MRI reconstructions from highly undersampled K-space data are presented.

518 citations


Journal ArticleDOI
TL;DR: This paper presents an algorithm for segmenting and measuring retinal vessels, by growing a ldquoRibbon of Twinsrdquo active contour model, which uses two pairs of contours to capture each vessel edge, while maintaining width consistency.
Abstract: This paper presents an algorithm for segmenting and measuring retinal vessels, by growing a ldquoRibbon of Twinsrdquo active contour model, which uses two pairs of contours to capture each vessel edge, while maintaining width consistency. The algorithm is initialized using a generalized morphological order filter to identify approximate vessels centerlines. Once the vessel segments are identified the network topology is determined using an implicit neural cost function to resolve junction configurations. The algorithm is robust, and can accurately locate vessel edges under difficult conditions, including noisy blurred edges, closely parallel vessels, light reflex phenomena, and very fine vessels. It yields precise vessel width measurements, with subpixel average width errors. We compare the algorithm with several benchmarks from the literature, demonstrating higher segmentation sensitivity and more accurate width measurement.

435 citations


Journal ArticleDOI
TL;DR: The proposed method outperforms other methods and yields results very close to those of an independent human observer, especially on the segmentation of the heart and the aorta in computed tomography scans of the thorax.
Abstract: A novel atlas-based segmentation approach based on the combination of multiple registrations is presented. Multiple atlases are registered to a target image. To obtain a segmentation of the target, labels of the atlas images are propagated to it. The propagated labels are combined by spatially varying decision fusion weights. These weights are derived from local assessment of the registration success. Furthermore, an atlas selection procedure is proposed that is equivalent to sequential forward selection from statistical pattern recognition theory. The proposed method is compared to three existing atlas-based segmentation approaches, namely (1) single atlas-based segmentation, (2) average-shape atlas-based segmentation, and (3) multi-atlas-based segmentation with averaging as decision fusion. These methods were tested on the segmentation of the heart and the aorta in computed tomography scans of the thorax. The results show that the proposed method outperforms other methods and yields results very close to those of an independent human observer. Moreover, the additional atlas selection step led to a faster segmentation at a comparable performance.

402 citations


Journal ArticleDOI
TL;DR: In vivo ability of the supersonic shear imaging technique to generate planar shear waves propagating in tissues is fully exploited and the new concept of In vivo shear wave spectroscopy (SWS) is introduced that could become an additional tool for tissue characterization.
Abstract: In vivo assessment of dispersion affecting the propagation of visco-elastic waves in soft tissues is key to understand the rheology of human tissues. In this paper, the ability of the supersonic shear imaging (SSI) technique to generate planar shear waves propagating in tissues is fully exploited. First, by strongly limiting shear wave diffraction in the imaging plane, this imaging technique enables to discriminate between the usually concomitant influences of both medium rheological properties and diffraction affecting the shear wave dispersion. Second, transient propagation of these plane shear waves in soft tissues can be measured using echographic images acquired at very high frame. In vitro and in vivo experiments demonstrate that dispersion curves, which characterize the rheological behavior of tissues by measuring the frequency dependence of shear wave speed and attenuation, can be recovered in the 75-600 Hz frequency range. Based on a phase difference algorithm, the dispersion curves are computed in 1 cm2 regions of interest from the acquired propagation movie. In vivo measurements in biceps brachii muscle and liver of three healthy volunteers show important differences in the rheological behavior of these different tissues. Liver tissue appears to be much more dispersive with a phase velocity ranging from ~ 1.5 m/s at 75 Hz to ~ 3 m/s at 500 Hz whereas muscle tissue shows an important anisotropy, shear waves propagating longitudinally to the muscular fibers are almost nondispersive while those propagating transversally are very dispersive with a shear wave speed ranging from 0.5 to 2 m/s between 75 and 500 Hz. The estimation of dispersion curves is local and can be performed separately in different regions of the organ. This signal processing approach based on the SSI modality introduces the new concept of In vivo shear wave spectroscopy (SWS) that could become an additional tool for tissue characterization. This paper demonstrates the in vivo ability of this SWS to quantify both local shear elasticity and dispersion in real time.

392 citations


Journal ArticleDOI
TL;DR: Results show that FLAB performs better than the other methodologies, particularly for smaller objects, and future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume.
Abstract: Accurate volume estimation in positron emission tomography (PET) is crucial for different oncology applications. The objective of our study was to develop a new fuzzy locally adaptive Bayesian (FLAB) segmentation for automatic lesion volume delineation. FLAB was compared with a threshold approach as well as the previously proposed fuzzy hidden Markov chains (FHMC) and the fuzzy C-Means (FCM) algorithms. The performance of the algorithms was assessed on acquired datasets of the IEC phantom, covering a range of spherical lesion sizes (10-37 mm), contrast ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions), and voxel sizes (8 and 64 mm3). In addition, the performance of the FLAB model was assessed on realistic nonuniform and nonspherical volumes simulated from patient lesions. Results show that FLAB performs better than the other methodologies, particularly for smaller objects. The volume error was 5%-15% for the different sphere sizes (down to 13 mm), contrast and image qualities considered, with a high reproducibility (variation < 4%). By comparison, the thresholding results were greatly dependent on image contrast and noise, whereas FCM results were less dependent on noise but consistently failed to segment lesions < 2 cm. In addition, FLAB performed consistently better for lesions < 2 cm in comparison to the FHMC algorithm. Finally the FLAB model provided errors less than 10% for nonspherical lesions with inhomogeneous activity distributions. Future developments will concentrate on an extension of FLAB in order to allow the segmentation of separate activity distribution regions within the same functional volume as well as a robustness study with respect to different scanners and reconstruction algorithms.

337 citations


Journal ArticleDOI
TL;DR: The method reconstructs, from radiographs of the hand, the borders of 15 bones automatically and then computes ldquointrinsicrdquo bone ages for each of 13 bones (radius, ulna, and 11 short bones) and transforms the intrinsic bone ages into Greulich Pyle or Tanner Whitehouse bone age.
Abstract: Bone age rating is associated with a considerable variability from the human interpretation, and this is the motivation for presenting a new method for automated determination of bone age (skeletal maturity). The method, called BoneXpert, reconstructs, from radiographs of the hand, the borders of 15 bones automatically and then computes ldquointrinsicrdquo bone ages for each of 13 bones (radius, ulna, and 11 short bones). Finally, it transforms the intrinsic bone ages into Greulich Pyle (GP) or Tanner Whitehouse (TW) bone age. The bone reconstruction method automatically rejects images with abnormal bone morphology or very poor image quality. From the methodological point of view, BoneXpert contains the following innovations: 1) a generative model (active appearance model) for the bone reconstruction; 2) the prediction of bone age from shape, intensity, and texture scores derived from principal component analysis; 3) the consensus bone age concept that defines bone age of each bone as the best estimate of the bone age of the other bones in the hand; 4) a common bone age model for males and females; and 5) the unified modelling of TW and GP bone age. BoneXpert is developed on 1559 images. It is validated on the Greulich Pyle atlas in the age range 2-17 years yielding an SD of 0.42 years [0.37; 0.47] 95% conf, and on 84 clinical TW-rated images yielding an SD of 0.80 years [0.68; 0.93] 95% conf. The precision of the GP bone age determination (its ability to yield the same result on a repeated radiograph) is inferred under suitable assumptions from six longitudinal series of radiographs. The result is an SD on a single determination of 0.17 years [0.13; 0.21] 95% conf.

333 citations


Journal ArticleDOI
TL;DR: Electro properties tomography derives the patient's electric conductivity, along with the corresponding electric fields, from the spatial sensitivity distributions of the applied RF coils, which are measured via MRI, which might lead to significantly higher spatial image resolution.
Abstract: The electric conductivity can potentially be used as an additional diagnostic parameter, e.g., in tumor diagnosis. Moreover, the electric conductivity, in connection with the electric field, can be used to estimate the local SAR distribution during MR measurements. In this study, a new approach, called electric properties tomography (EPT) is presented. It derives the patient's electric conductivity, along with the corresponding electric fields, from the spatial sensitivity distributions of the applied RF coils, which are measured via MRI. Corresponding numerical simulations and initial experiments on a standard clinical MRI system underline the principal feasibility of EPT to determine the electric conductivity and the local SAR. In contrast to previous methods to measure the patient's electric properties, EPT does not apply externally mounted electrodes, currents, or RF probes, thus enhancing the practicality of the approach. Furthermore, in contrast to previous methods, EPT circumvents the solution of an inverse problem, which might lead to significantly higher spatial image resolution.

Journal ArticleDOI
TL;DR: This paper suggests a new reconstruction strategy using the compressed sensing formalism which states that a small number of linear projections of a compressible image contain enough information for reconstruction to dramatically reduce the number of measurements needed for a given quality of reconstruction.
Abstract: Photo-acoustic (PA) imaging has been developed for different purposes, but recently, the modality has gained interest with applications to small animal imaging. As a technique it is sensitive to endogenous optical contrast present in tissues and, contrary to diffuse optical imaging, it promises to bring high resolution imaging for in vivo studies at midrange depths (3-10 mm). Because of the limited amount of radiation tissues can be exposed to, existing reconstruction algorithms for circular tomography require a great number of measurements and averaging, implying long acquisition times. Time-resolved PA imaging is therefore possible only at the cost of complex and expensive electronics. This paper suggests a new reconstruction strategy using the compressed sensing formalism which states that a small number of linear projections of a compressible image contain enough information for reconstruction. By directly sampling the image to recover in a sparse representation, it is possible to dramatically reduce the number of measurements needed for a given quality of reconstruction.

Journal ArticleDOI
TL;DR: A framework for the geometric analysis of vascular structures, in particular for the quantification of the geometric relationships between the elements of a vascular network based on the definition of centerlines is presented.
Abstract: There is well-documented evidence that vascular geometry has a major impact in blood flow dynamics and consequently in the development of vascular diseases, like atherosclerosis and cerebral aneurysmal disease. The study of vascular geometry and the identification of geometric features associated with a specific pathological condition can therefore shed light into the mechanisms involved in the pathogenesis and progression of the disease. Although the development of medical imaging technologies is providing increasing amounts of data on the three-dimensional morphology of the in vivo vasculature, robust and objective tools for quantitative analysis of vascular geometry are still lacking. In this paper, we present a framework for the geometric analysis of vascular structures, in particular for the quantification of the geometric relationships between the elements of a vascular network based on the definition of centerlines. The framework is founded upon solid computational geometry criteria, which confer robustness of the analysis with respect to the high variability of in vivo vascular geometry. The techniques presented are readily available as part of the VMTK, an open source framework for image segmentation, geometric characterization, mesh generation and computational hemodynamics specifically developed for the analysis of vascular structures. As part of the Aneurisk project, we present the application of the present framework to the characterization of the geometric relationships between cerebral aneurysms and their parent vasculature.

Journal ArticleDOI
TL;DR: This initial investigation evaluates the ability of ultrafast and high-resolution ultrasonic systems to provide a real-time and quantitative mapping of corneal viscoelasticity and finds the SSI technique to be in good agreement with ex vivo experiments.
Abstract: The noninvasive estimation of in vivo mechanical properties of cornea is envisioned to find several applications in ophthalmology. Such high-resolution measurements of local cornea stiffness could lead to a better anticipation and understanding of corneal pathologies such as Keratoconus. It could also provide a quantitative evaluation of corneal biomechanical response after corneal refractive surgeries and a tool for evaluating the efficacy of new cornea treatments such as cornea transplant using femtosecond laser or therapy based on Riboflavin/UltraViolet-A Corneal Cross Linking (UVA CXL). In the very important issue of glaucoma diagnosis and management, the fine tuning corneal elasticity measurement could also succeed to strongly correlate the applanation tonometry with the "true" intra-ocular pressure (IOP). This initial investigation evaluates the ability of ultrafast and high-resolution ultrasonic systems to provide a real-time and quantitative mapping of corneal viscoelasticity. Quantitative elasticity maps were acquired ex vivo on porcine cornea using the supersonic shear imaging (SSI) technique. A conventional 15 MHz linear probe was used to perform conventional ultrasonic imaging of the cornea. A dedicated ultrasonic sequence combines the generation of a remote palpation in the cornea and ultrafast (20 000 frames/s) ultrasonic imaging of the resulting corneal displacements that evolve into a shear wave propagation whose local speed was directly linked to local elasticity. A quantitative high-resolution map (150 mum resolution) of local corneal elasticity can be provided by this dedicated sequence of ultrasonic insonifications. Quantitative maps of corneal elasticity were obtained on ex vivo freshly enucleated porcine corneas. In the cornea, a quite homogenous stiffness map was found with a 190 kPa +/ - 32 kPa mean elasticity. The influence of photodynamic Riboflavin/UVA induced CXL was measured. A significant Young's modulus increase was obtained with a mean 890 kPa + / - 250 kPa posttreatment Young's modulus (460% increase), located in the anterior part of the cornea. Simulations based on 3-D time domain finite differences simulation were also performed and found to be in good agreement with ex vivo experiments. The SSI technique can perform real-time, noninvasive, high-resolution, and quantitative maps of the whole corneal elasticity. This technique could be real time and straightforward adapted for a very wide field of in vivo investigations.

Journal ArticleDOI
TL;DR: A computer-aided system to automatically grade pathological images according to Gleason grading system which is the most widespread method for histological grading of prostate tissues is presented and two feature extraction methods based on fractal dimension are proposed to analyze variations of intensity and texture complexity in regions of interest.
Abstract: Accurate grading for prostatic carcinoma in pathological images is important to prognosis and treatment planning. Since human grading is always time-consuming and subjective, this paper presents a computer-aided system to automatically grade pathological images according to Gleason grading system which is the most widespread method for histological grading of prostate tissues. We proposed two feature extraction methods based on fractal dimension to analyze variations of intensity and texture complexity in regions of interest. Each image can be classified into an appropriate grade by using Bayesian, k-NN, and support vector machine (SVM) classifiers, respectively. Leave-one-out and k-fold cross-validation procedures were used to estimate the correct classification rates (CCR). Experimental results show that 91.2%, 93.7%, and 93.7% CCR can be achieved by Bayesian, k-NN, and SVM classifiers, respectively, for a set of 205 pathological prostate images. If our fractal-based feature set is optimized by the sequential floating forward selection method, the CCR can be promoted up to 94.6%, 94.2%, and 94.6%, respectively, using each of the above three classifiers. Experimental results also show that our feature set is better than the feature sets extracted from multiwavelets, Gabor filters, and gray-level co-occurrence matrix methods because it has a much smaller size and still keeps the most powerful discriminating capability in grading prostate images.

Journal ArticleDOI
TL;DR: A new reconstruction procedure is proposed that reduces the streak artifacts and that might improve the diagnostic value of the CT images, and was validated on simulations, phantom and patient data, and compared with other metal artifact reduction algorithms.
Abstract: Metal implants such as hip prostheses and dental fillings produce streak and star artifacts in the reconstructed computed tomography (CT) images. Due to these artifacts, the CT image may not be diagnostically usable. A new reconstruction procedure is proposed that reduces the streak artifacts and that might improve the diagnostic value of the CT images. The procedure starts with a maximum a posteriori (MAP) reconstruction using an iterative reconstruction algorithm and a multimodal prior. This produces an artifact-free constrained image. This constrained image is the basis for an image-based projection completion procedure. The algorithm was validated on simulations, phantom and patient data, and compared with other metal artifact reduction algorithms.

Journal ArticleDOI
TL;DR: A general and flexible Monte- Carlo simulation framework for diffusing spins that generates realistic synthetic data for diffusion magnetic resonance imaging and achieves an optimal combination of spins and updates for a given run time by trading off number of updates in favor of number of spins.
Abstract: This paper describes a general and flexible Monte- Carlo simulation framework for diffusing spins that generates realistic synthetic data for diffusion magnetic resonance imaging. Similar systems in the literature consider only simple substrates and their authors do not consider convergence and parameter optimization. We show how to run Monte-Carlo simulations within complex irregular substrates. We compare the results of the Monte-Carlo simulation to an analytical model of restricted diffusion to assess precision and accuracy of the generated results. We obtain an optimal combination of spins and updates for a given run time by trading off number of updates in favor of number of spins such that precision and accuracy of sythesized data are both optimized. Further experiments demonstrate the system using a tissue environment that current analytic models cannot capture. This tissue model incorporates swelling, abutting, and deformation. Swelling-induced restriction in the extracellular space due to the effects of abutting cylinders leads to large departures from the predictions of the analytical model, which does not capture these effects. This swelling-induced restriction may be an important mechanism in explaining the changes in apparent diffusion constant observed in the aftermath of acute ischemic stroke.

Journal ArticleDOI
TL;DR: Textural features useful in distinguishing tumor from normal tissue in head and neck via quantitative texture analysis of coregistered 18 F-FDG PET and CT images provided good discrimination performance, and may lead to improvement in the accuracy of radiation targeting of HNC.
Abstract: Coregistered fluoro-deoxy-glucose (FDG) positron emission tomography/computed tomography (PET/CT) has shown potential to improve the accuracy of radiation targeting of head and neck cancer (HNC) when compared to the use of CT simulation alone. The objective of this study was to identify textural features useful in distinguishing tumor from normal tissue in head and neck via quantitative texture analysis of coregistered 18 F-FDG PET and CT images. Abnormal and typical normal tissues were manually segmented from PET/CT images of 20 patients with HNC and 20 patients with lung cancer. Texture features including some derived from spatial grey-level dependence matrices (SGLDM) and neighborhood gray-tone-difference matrices (NGTDM) were selected for characterization of these segmented regions of interest (ROIs). Both K nearest neighbors (KNNs) and decision tree (DT)-based KNN classifiers were employed to discriminate images of abnormal and normal tissues. The area under the curve (AZ) of receiver operating characteristics (ROC) was used to evaluate the discrimination performance of features in comparison to an expert observer. The leave-one-out and bootstrap techniques were used to validate the results. The AZ of DT-based KNN classifier was 0.95. Sensitivity and specificity for normal and abnormal tissue classification were 89% and 99%, respectively. In summary, NGTDM features such as PET coarseness, PET contrast, and CT coarseness extracted from FDG PET/CT images provided good discrimination performance. The clinical use of such features may lead to improvement in the accuracy of radiation targeting of HNC.

Journal ArticleDOI
TL;DR: A combined surface and volume morph (CVS) that accurately registers both cortical and subcortical regions, establishing a single coordinate system suitable for the entire brain is proposed.
Abstract: In this paper, we propose a novel method for the registration of volumetric images of the brain that optimizes the alignment of both cortical and subcortical structures. In order to achieve this, relevant geometrical information is extracted from a surface-based morph and diffused into the volume using the Navier operator of elasticity, resulting in a volumetric warp that aligns cortical folding patterns. This warp field is then refined with an intensity driven optical flow procedure that registers noncortical regions, while preserving the cortical alignment. The result is a combined surface and volume morph (CVS) that accurately registers both cortical and subcortical regions, establishing a single coordinate system suitable for the entire brain.

Journal ArticleDOI
TL;DR: The proposed vertebra detection and segmentation system is proved to be robust and accurate so that it can be used for advanced research and application on spinal MR images.
Abstract: Automatic extraction of vertebra regions from a spinal magnetic resonance (MR) image is normally required as the first step to an intelligent spinal MR image diagnosis system. In this work, we develop a fully automatic vertebra detection and segmentation system, which consists of three stages; namely, AdaBoost-based vertebra detection, detection refinement via robust curve fitting, and vertebra segmentation by an iterative normalized cut algorithm. In order to produce an efficient and effective vertebra detector, a statistical learning approach based on an improved AdaBoost algorithm is proposed. A robust estimation procedure is applied on the detected vertebra locations to fit a spine curve, thus refining the above vertebra detection results. This refinement process involves removing the false detections and recovering the miss-detected vertebrae. Finally, an iterative normalized-cut segmentation algorithm is proposed to segment the precise vertebra regions from the detected vertebra locations. In our implementation, the proposed AdaBoost-based detector is trained from 22 spinal MR volume images. The experimental results show that the proposed vertebra detection and segmentation system can achieve nearly 98% vertebra detection rate and 96% segmentation accuracy on a variety of testing spinal MR images. Our experiments also show the vertebra detection and segmentation accuracies by using the proposed algorithm are superior to those of the previous representative methods. The proposed vertebra detection and segmentation system is proved to be robust and accurate so that it can be used for advanced research and application on spinal MR images.

Journal ArticleDOI
TL;DR: Simulations and experimental results demonstrate that the proposed reconstruction method directly yields a spin-density and relaxivity map from only a single radial data set that is neither affected by the typical artifacts from TE mixing, nor by streaking artifacts from the incomplete k-space coverage at individual echo times.
Abstract: In radial fast spin-echo magnetic resonance imaging (MRI), a set of overlapping spokes with an inconsistent T2 weighting is acquired, which results in an averaged image contrast when employing conventional image reconstruction techniques. This work demonstrates that the problem may be overcome with the use of a dedicated reconstruction method that further allows for T2 quantification by extracting the embedded relaxation information. Thus, the proposed reconstruction method directly yields a spin-density and relaxivity map from only a single radial data set. The method is based on an inverse formulation of the problem and involves a modeling of the received MRI signal. Because the solution is found by numerical optimization, the approach exploits all data acquired. Further, it handles multicoil data and optionally allows for the incorporation of additional prior knowledge. Simulations and experimental results for a phantom and human brain in vivo demonstrate that the method yields spin-density and relaxivity maps that are neither affected by the typical artifacts from TE mixing, nor by streaking artifacts from the incomplete k-space coverage at individual echo times.

Journal ArticleDOI
TL;DR: The proposed semi-automatic segmentations obtained by the proposed method are within the variability of the manual segmentations of two experts, and well suited to a semi- automatic context that requires minimal manual initialization.
Abstract: The goal of this work is to perform a segmentation of the intimamedia thickness (IMT) of carotid arteries in view of computing various dynamical properties of that tissue, such as the elasticity distribution (elastogram). The echogenicity of a region of interest comprising the intima-media layers, the lumen, and the adventitia in an ultrasonic B-mode image is modeled by a mixture of three Nakagami distributions. In a first step, we compute the maximum a posteriori estimator of the proposed model, using the expectation maximization (EM) algorithm. We then compute the optimal segmentation based on the estimated distributions as well as a statistical prior for disease-free IMT using a variant of the exploration/selection (ES) algorithm. Convergence of the ES algorithm to the optimal solution is assured asymptotically and is independent of the initial solution. In particular, our method is well suited to a semi-automatic context that requires minimal manual initialization. Tests of the proposed method on 30 sequences of ultrasonic B-mode images of presumably disease-free control subjects are reported. They suggest that the semi-automatic segmentations obtained by the proposed method are within the variability of the manual segmentations of two experts.

Journal ArticleDOI
TL;DR: Four reduced redundancy 2-D array configurations for miniature 3-D ultrasonic imaging systems are explored and theoretical and simulated point spread functions of the array configurations are presented along with quantitative comparison in terms of the front-end complexity and image quality.
Abstract: In real-time ultrasonic 3-D imaging, in addition to difficulties in fabricating and interconnecting 2-D transducer arrays with hundreds of elements, there are also challenges in acquiring and processing data from a large number of ultrasound channels. The coarray (spatial convolution of the transmit and receive arrays) can be used to find efficient array designs that capture all of the spatial frequency content (a transmit-receive element combination corresponds to a spatial frequency) with a reduced number of active channels and firing events. Eliminating the redundancies in the transmit-receive element combinations and firing events reduces the overall system complexity and improves the frame rate. Here we explore four reduced redundancy 2-D array configurations for miniature 3-D ultrasonic imaging systems. Our approach is based on 1) coarray design with reduced redundancy using different subsets of linear arrays constituting the 2-D transducer array, and 2) 3-D scanning using fan-beams (narrow in one dimension and broad in the other dimension) generated by the transmit linear arrays. We form the overall array response through coherent summation of the individual responses of each transmit-receive array pairs. We present theoretical and simulated point spread functions of the array configurations along with quantitative comparison in terms of the front-end complexity and image quality.

Journal ArticleDOI
TL;DR: An automatic method based on the information provided by the segmentation and analysis of the fissures, using a fast-marching based segmentation of a projection of the optimal surface is developed.
Abstract: The human lungs are divided into five distinct anatomic compartments called the lobes, which are separated by the pulmonary fissures. The accurate identification of the fissures is of increasing importance in the early detection of pathologies, and in the regional functional analysis of the lungs. We have developed an automatic method for the segmentation and analysis of the fissures, based on the information provided by the segmentation and analysis of the airway and vascular trees. This information is used to provide a close initial approximation to the fissures, using a watershed transform on a distance map of the vasculature. In a further refinement step, this estimate is used to construct a region of interest (ROI) encompassing the fissures. The ROI is enhanced using a ridgeness measure, which is followed by a 3-D graph search to find the optimal surface within the ROI. We have also developed an automatic method to detect incomplete fissures, using a fast-marching based segmentation of a projection of the optimal surface. The detected incomplete fissure is used to extrapolate and smoothly complete the fissure. We evaluate the method by testing on data sets from normal subjects and subjects with mild to moderate emphysema.

Journal ArticleDOI
TL;DR: It is demonstrated that NLML performs better than the conventional local maximum likelihood (LML) estimation method in preserving and defining sharp tissue boundaries in terms of a well-defined sharpness metric while also having superior performance in method error.
Abstract: Postacquisition denoising of magnetic resonance (MR) images is of importance for clinical diagnosis and computerized analysis, such as tissue classification and segmentation. It has been shown that the noise in MR magnitude images follows a Rician distribution, which is signal-dependent when signal-to-noise ratio (SNR) is low. It is particularly difficult to remove the random fluctuations and bias introduced by Rician noise. The objective of this paper is to estimate the noise free signal from MR magnitude images. We model images as random fields and assume that pixels which have similar neighborhoods come from the same distribution. We propose a nonlocal maximum likelihood (NLML) estimation method for Rician noise reduction. Our method yields an optimal estimation result that is more accurate in recovering the true signal from Rician noise than NL means algorithm in the sense of SNR, contrast, and method error. We demonstrate that NLML performs better than the conventional local maximum likelihood (LML) estimation method in preserving and defining sharp tissue boundaries in terms of a well-defined sharpness metric while also having superior performance in method error.

Journal ArticleDOI
TL;DR: The proposed adaptive mean-shift methodology is utilized in order to classify brain voxels into one of three main tissue types: gray matter, white matter, and cerebro-spinal fluid and is shown to perform well in comparison to other state-of-the-art methods without the use of a preregistered statistical brain atlas.
Abstract: An automated scheme for magnetic resonance imaging (MRI) brain segmentation is proposed. An adaptive mean-shift methodology is utilized in order to classify brain voxels into one of three main tissue types: gray matter, white matter, and cerebro-spinal fluid. The MRI image space is represented by a high-dimensional feature space that includes multimodal intensity features as well as spatial features. An adaptive mean-shift algorithm clusters the joint spatial-intensity feature space, thus extracting a representative set of high-density points within the feature space, otherwise known as modes. Tissue segmentation is obtained by a follow-up phase of intensity-based mode clustering into the three tissue categories. By its nonparametric nature, adaptive mean-shift can deal successfully with nonconvex clusters and produce convergence modes that are better candidates for intensity based classification than the initial voxels. The proposed method is validated on 3-D single and multimodal datasets, for both simulated and real MRI data. It is shown to perform well in comparison to other state-of-the-art methods without the use of a preregistered statistical brain atlas.

Journal ArticleDOI
TL;DR: New progress is reported in developing the instrument and software platform of a combined X-ray mammography/diffuse optical breast imaging system and a series of balloon phantom experiments and the optical image analysis of 49 healthy patients, which shows composite features from both tissue structure and pressure distribution.
Abstract: In this paper, we report new progress in developing the instrument and software platform of a combined X-ray mammography/diffuse optical breast imaging system. Particularly, we focus on system validation using a series of balloon phantom experiments and the optical image analysis of 49 healthy patients. Using the finite-element method for forward modeling and a regularized Gauss-Newton method for parameter reconstruction, we recovered the inclusions inside the phantom and the hemoglobin images of the human breasts. An enhanced coupling coefficient estimation scheme was also incorporated to improve the accuracy and robustness of the reconstructions. The recovered average total hemoglobin concentration (HbT) and oxygen saturation (SO2) from 68 breast measurements are 16.2 mum and 71%, respectively, where the HbT presents a linear trend with breast density. The low HbT value compared to literature is likely due to the associated mammographic compression. From the spatially co-registered optical/X-ray images, we can identify the chest-wall muscle, fatty tissue, and fibroglandular regions with an average HbT of 20.1plusmn6.1 nmum for fibroglandular tissue, 15.4plusmn5.0nmum for adipose, and 22.2plusmn7.3nmum for muscle tissue. The differences between fibroglandular tissue and the orresponding adipose tissue are significant ***INVALID TEX*** . At the same time, we recognize that the optical images are influenced, to a certain extent, by mammographical compression. The optical images from a subset of patients show composite features from both tissue structure and pressure distribution. We present mechanical simulations which further confirm this hypothesis.

Journal ArticleDOI
TL;DR: It is shown for the case of single-frequency microwave tomography that the imaging accuracy is comparable to that obtained when the original discrete mesh is used, despite the reduction of the dimension of the inverse problem.
Abstract: Breast imaging via microwave tomography involves estimating the distribution of dielectric properties within the patient's breast on a discrete mesh. The number of unknowns in the discrete mesh can be very large for 3-D imaging, and this results in computational challenges. We propose a new approach where the discrete mesh is replaced with a relatively small number of smooth basis functions. The dimension of the tomography problem is reduced by estimating the coefficients of the basis functions instead of the dielectric properties at each element in the discrete mesh. The basis functions are constructed using knowledge of the location of the breast surface. The number of functions used in the basis can be varied to balance resolution and computational complexity. The reduced dimension of the inverse problem enables application of a computationally efficient, multiple-frequency inverse scattering algorithm in 3-D. The efficacy of the proposed approach is verified using two 3-D anatomically realistic numerical breast phantoms. It is shown for the case of single-frequency microwave tomography that the imaging accuracy is comparable to that obtained when the original discrete mesh is used, despite the reduction of the dimension of the inverse problem. Results are also shown for a multiple-frequency algorithm where it is computationally challenging to use the original discrete mesh.

Journal ArticleDOI
TL;DR: This paper develops a new method to estimate the parameters defining the Markovian distribution of the measured data, while performing the data clustering simultaneously, using fuzzy Markov random fields (fuzzy MRFs) for the segmentation of multispectral MR prostate images.
Abstract: Prostate cancer is one of the leading causes of death from cancer among men in the United States. Currently, high-resolution magnetic resonance imaging (MRI) has been shown to have higher accuracy than trans-rectal ultrasound (TRUS) when used to ascertain the presence of prostate cancer. As MRI can provide both morphological and functional images for a tissue of interest, some researchers are exploring the uses of multispectral MRI to guide prostate biopsies and radiation therapy. However, success with prostate cancer localization based on current imaging methods has been limited due to overlap in feature space of benign and malignant tissues using any one MRI method and the interobserver variability. In this paper, we present a new unsupervised segmentation method for prostate cancer detection, using fuzzy Markov random fields (fuzzy MRFs) for the segmentation of multispectral MR prostate images. Typically, both hard and fuzzy MRF models have two groups of parameters to be estimated: the MRF parameters and class parameters for each pixel in the image. To date, these two parameters have been treated separately, and estimated in an alternating fashion. In this paper, we develop a new method to estimate the parameters defining the Markovian distribution of the measured data, while performing the data clustering simultaneously. We perform computer simulations on synthetic test images and multispectral MR prostate datasets to demonstrate the efficacy and efficiency of the proposed method and also provide a comparison with some of the commonly used methods.

Journal ArticleDOI
TL;DR: Compound radial and circumferential strain images were constructed for a homogeneous vessel phantom with a concentric lumen subjected to different intraluminal pressures and revealed that compounding increases the image quality considerably compared to images from 0deg information only.
Abstract: Stroke and myocardial infarction are initiated by rupturing vulnerable atherosclerotic plaques. With noninvasive ultrasound elastography, these plaques might be detected in carotid arteries. However, since the ultrasound beam is generally not aligned with the radial direction in which the artery pulsates, radial and circumferential strains need to be derived from axial and lateral data. Conventional techniques to perform this conversion have the disadvantage that lateral strain is required. Since the lateral strain has relatively poor accuracy, the quality of the radial and circumferential strains is reduced. In this study, the radial and circumferential strain estimates are improved by combining axial strain data acquired at multiple insonification angles. Adaptive techniques to correct for grating lobe interference and other artifacts that occur when performing beam steering at large angles are introduced. Acquisitions at multiple angles are performed with a beam steered linear array. For each beam steered angle, there are two spatially restricted regions of the circular vessel cross section where the axial strain is closely aligned with the radial strain and two spatially restricted regions (different from the radial strain regions) where the axial strain is closely aligned with the circumferential strain. These segments with high quality strain estimates are compounded to form radial or circumferential strain images. Compound radial and circumferential strain images were constructed for a homogeneous vessel phantom with a concentric lumen subjected to different intraluminal pressures. Comparison of the elastographic signal-to-noise ratio (SNRe) and contrast-to-noise ratio ( CNRe) revealed that compounding increases the image quality considerably compared to images from 0deg information only. SNRe and CNRe increase up to 2.7 and 6.6 dB, respectively. The highest image quality was achieved by projecting axial data, completed with a small segment determined by either principal component analysis or by application of a rotation matrix.