scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Medical Imaging in 2007"


Journal ArticleDOI
TL;DR: The proposed method is a wholly self-contained topology correction algorithm, which determines geometrically accurate, topologically correct solutions based on the magnetic resonance imaging (MRI) intensity profile and the expected local curvature.
Abstract: In this paper, we focus on the retrospective topology correction of surfaces. We propose a technique to accurately correct the spherical topology of cortical surfaces. Specifically, we construct a mapping from the original surface onto the sphere to detect topological defects as minimal nonhomeomorphic regions. The topology of each defect is then corrected by opening and sealing the surface along a set of nonseparating loops that are selected in a Bayesian framework. The proposed method is a wholly self-contained topology correction algorithm, which determines geometrically accurate, topologically correct solutions based on the magnetic resonance imaging (MRI) intensity profile and the expected local curvature. Applied to real data, our method provides topological corrections similar to those made by a trained operator

900 citations


Journal ArticleDOI
TL;DR: Several methods that have been developed to reduce or eliminate intensity inhomogeneities in MRI are reviewed, and key evaluation issues and future development of the inhomogeneity correction field are discussed.
Abstract: Medical image acquisition devices provide a vast amount of anatomical and functional information, which facilitate and improve diagnosis and patient treatment, especially when supported by modern quantitative image analysis methods. However, modality specific image artifacts, such as the phenomena of intensity inhomogeneity in magnetic resonance images (MRI), are still prominent and can adversely affect quantitative image analysis. In this paper, numerous methods that have been developed to reduce or eliminate intensity inhomogeneities in MRI are reviewed. First, the methods are classified according to the inhomogeneity correction strategy. Next, different qualitative and quantitative evaluation approaches are reviewed. Third, 60 relevant publications are categorized according to several features and analyzed so as to reveal major trends, popularity, evaluation strategies and applications. Finally, key evaluation issues and future development of the inhomogeneity correction field, supported by the results of the analysis, are discussed

844 citations


Journal ArticleDOI
TL;DR: In the framework of computer-aided diagnosis of eye diseases, retinal vessel segmentation based on line operators is proposed and two segmentation methods are considered.
Abstract: In the framework of computer-aided diagnosis of eye diseases, retinal vessel segmentation based on line operators is proposed. A line detector, previously used in mammography, is applied to the green channel of the retinal image. It is based on the evaluation of the average grey level along lines of fixed length passing through the target pixel at different orientations. Two segmentation methods are considered. The first uses the basic line detector whose response is thresholded to obtain unsupervised pixel classification. As a further development, we employ two orthogonal line detectors along with the grey level of the target pixel to construct a feature vector for supervised classification using a support vector machine. The effectiveness of both methods is demonstrated through receiver operating characteristic analysis on two publicly available databases of color fundus images.

819 citations


Journal ArticleDOI
TL;DR: A constant azimuthal profile spacing, based on the Golden Ratio, is investigated as optimal for image reconstruction from an arbitrary number of profiles in radial MRI.
Abstract: In dynamic magnetic resonance imaging (MRI) studies, the motion kinetics or the contrast variability are often hard to predict, hampering an appropriate choice of the image update rate or the temporal resolution. A constant azimuthal profile spacing (111.246deg), based on the Golden Ratio, is investigated as optimal for image reconstruction from an arbitrary number of profiles in radial MRI. The profile order is evaluated and compared with a uniform profile distribution in terms of signal-to-noise ratio (SNR) and artifact level. The favorable characteristics of such a profile order are exemplified in two applications on healthy volunteers. First, an advanced sliding window reconstruction scheme is applied to dynamic cardiac imaging, with a reconstruction window that can be flexibly adjusted according to the extent of cardiac motion that is acceptable. Second, a contrast-enhancing k-space filter is presented that permits reconstructing an arbitrary number of images at arbitrary time points from one raw data set. The filter was utilized to depict the T1-relaxation in the brain after a single inversion prepulse. While a uniform profile distribution with a constant angle increment is optimal for a fixed and predetermined number of profiles, a profile distribution based on the Golden Ratio proved to be an appropriate solution for an arbitrary number of profiles

668 citations


Journal ArticleDOI
TL;DR: A new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects, enabling group comparison of white matter anatomy and results regarding the stability of the method and parameter choices are presented.
Abstract: We propose a new white matter atlas creation method that learns a model of the common white matter structures present in a group of subjects. We demonstrate that our atlas creation method, which is based on group spectral clustering of tractography, discovers structures corresponding to expected white matter anatomy such as the corpus callosum, uncinate fasciculus, cingulum bundles, arcuate fasciculus, and corona radiata. The white matter clusters are augmented with expert anatomical labels and stored in a new type of atlas that we call a high-dimensional white matter atlas. We then show how to perform automatic segmentation of tractography from novel subjects by extending the spectral clustering solution, stored in the atlas, using the Nystrom method. We present results regarding the stability of our method and parameter choices. Finally we give results from an atlas creation and automatic segmentation experiment. We demonstrate that our automatic tractography segmentation identifies corresponding white matter regions across hemispheres and across subjects, enabling group comparison of white matter anatomy.

377 citations


Journal ArticleDOI
TL;DR: The performance of Gaussian, -nearest neighbor, and support vector machine classifiers together with the sequential forward feature selection algorithm is compared to aggregate color, texture, and morphometric cues at the global and histological object levels for classification.
Abstract: We present a study of image features for cancer diagnosis and Gleason grading of the histological images of prostate. In diagnosis, the tissue image is classified into the tumor and nontumor classes. In Gleason grading, which characterizes tumor aggressiveness, the image is classified as containing a low- or high-grade tumor. The image sets used in this paper consisted of 367 and 268 color images for the diagnosis and Gleason grading problems, respectively, and were captured from representative areas of hematoxylin and eosin-stained tissue retrieved from tissue microarray cores or whole sections. The primary contribution of this paper is to aggregate color, texture, and morphometric cues at the global and histological object levels for classification. Features representing different visual cues were combined in a supervised learning framework. We compared the performance of Gaussian, -nearest neighbor, and support vector machine classifiers together with the sequential forward feature selection algorithm. On diagnosis, using a five-fold cross-validation estimate, an accuracy of 96.7% was obtained. On Gleason grading, the achieved accuracy of classification into low- and high-grade classes was 81.0%.

369 citations


Journal ArticleDOI
TL;DR: This paper presents a method for classification of structural brain magnetic resonance (MR) images, by using a combination of deformation-based morphometry and machine learning methods, which demonstrates not only high classification accuracy but also good stability.
Abstract: This paper presents a method for classification of structural brain magnetic resonance (MR) images, by using a combination of deformation-based morphometry and machine learning methods. A morphological representation of the anatomy of interest is first obtained using a high-dimensional mass-preserving template warping method, which results in tissue density maps that constitute local tissue volumetric measurements. Regions that display strong correlations between tissue volume and classification (clinical) variables are extracted using a watershed segmentation algorithm, taking into account the regional smoothness of the correlation map which is estimated by a cross-validation strategy to achieve robustness to outliers. A volume increment algorithm is then applied to these regions to extract regional volumetric features, from which a feature selection technique using support vector machine (SVM)-based criteria is used to select the most discriminative features, according to their effect on the upper bound of the leave-one-out generalization error. Finally, SVM-based classification is applied using the best set of features, and it is tested using a leave-one-out cross-validation strategy. The results on MR brain images of healthy controls and schizophrenia patients demonstrate not only high classification accuracy (91.8% for female subjects and 90.8% for male subjects), but also good stability with respect to the number of features selected and the size of SVM kernel used

369 citations


Journal ArticleDOI
TL;DR: An overview of brain functional localization is provided along with a survey and classification of the image registration techniques related to this problem to establish a fully automatic functional localization procedure.
Abstract: Functional localization is a concept which involves the application of a sequence of geometrical and statistical image processing operations in order to define the location of brain activity or to produce functional/parametric maps with respect to the brain structure or anatomy. Considering that functional brain images do not normally convey detailed structural information and, thus, do not present an anatomically specific localization of functional activity, various image registration techniques are introduced in the literature for the purpose of mapping functional activity into an anatomical image or a brain atlas. The problems addressed by these techniques differ depending on the application and the type of analysis, i.e., single-subject versus group analysis. Functional to anatomical brain image registration is the core part of functional localization in most applications and is accompanied by intersubject and subject-to-atlas registration for group analysis studies. Cortical surface registration and automatic brain labeling are some of the other tools towards establishing a fully automatic functional localization procedure. While several previous survey papers have reviewed and classified general-purpose medical image registration techniques, this paper provides an overview of brain functional localization along with a survey and classification of the image registration techniques related to this problem

291 citations


Journal ArticleDOI
TL;DR: This paper reports results for the automatic detection of the optic nerve and localization of the macula using digital red-free fundus photography and relies on the accurate segmentation of the vasculature of the retina followed by the determination of spatial features describing the density, average thickness, and average orientation of the Vasculature in relation to the position of the fibre optic nerve.
Abstract: The widespread availability of electronic imaging devices throughout the medical community is leading to a growing body of research on image processing and analysis to diagnose retinal disease such as diabetic retinopathy (DR). Productive computer-based screening of large, at-risk populations at low cost requires robust, automated image analysis. In this paper we present results for the automatic detection of the optic nerve and localization of the macula using digital red-free fundus photography. Our method relies on the accurate segmentation of the vasculature of the retina followed by the determination of spatial features describing the density, average thickness, and average orientation of the vasculature in relation to the position of the optic nerve. Localization of the macula follows using knowledge of the optic nerve location to detect the horizontal raphe of the retina using a geometric model of the vasculature. We report 90.4% detection performance for the optic nerve and 92.5% localization performance for the macula for red-free fundus images representing a population of 345 images corresponding to 269 patients with 18 different pathologies associated with DR and other common retinal diseases such as age-related macular degeneration.

245 citations


Journal ArticleDOI
TL;DR: It is shown that Riemannian metrics for tensors, and more specifically the log-Euclidean metrics, are a good candidate and that this criterion can be efficiently optimized and that the positive definiteness of tensors is always ensured.
Abstract: Diffusion tensor magnetic resonance imaging (DT-MRI or DTI) is an imaging modality that is gaining importance in clinical applications. However, in a clinical environment, data have to be acquired rapidly, often at the expense of the image quality. This often results in DTI datasets that are not suitable for complex postprocessing like fiber tracking. We propose a new variational framework to improve the estimation of DT-MRI in this clinical context. Most of the existing estimation methods rely on a log-Gaussian noise (Gaussian noise on the image logarithms), or a Gaussian noise, that do not reflect the Rician nature of the noise in MR images with a low signal-to-noise ratio (SNR). With these methods, the Rician noise induces a shrinking effect: the tensor volume is underestimated when other noise models are used for the estimation. In this paper, we propose a maximum likelihood strategy that fully exploits the assumption of a Rician noise. To further reduce the influence of the noise, we optimally exploit the spatial correlation by coupling the estimation with an anisotropic prior previously proposed on the spatial regularity of the tensor field itself, which results in a maximum a posteriori estimation. Optimizing such a nonlinear criterion requires adapted tools for tensor computing. We show that Riemannian metrics for tensors, and more specifically the log-Euclidean metrics, are a good candidate and that this criterion can be efficiently optimized. Experiments on synthetic data show that our method correctly handles the shrinking effect even with very low SNR, and that the positive definiteness of tensors is always ensured. Results on real clinical data demonstrate the truthfulness of the proposed approach and show promising improvements of fiber tracking in the brain and the spinal cord.

242 citations


Journal ArticleDOI
TL;DR: It is suggested that inadequate normalization with low-dimensional approaches can result in insufficient removal of shape differences which in turn can confound FA differences in a complex manner, and that utilizing high-dimensional normalization can both significantly minimize the confounding effect of shape Differences to FA differences and provide a more complete description of WM differences.
Abstract: Spatial normalization of diffusion tensor images plays a key role in voxel-based analysis of white matter (WM) group differences. Currently, it has been achieved using low-dimensional registration methods in the large majority of clinical studies. This paper aims to motivate the use of high-dimensional normalization approaches by generating evidence of their impact on the findings of such studies. Using an ongoing amyotrophic lateral sclerosis (ALS) study, we evaluated three normalization methods representing the current range of available approaches: low-dimensional normalization using the fractional anisotropy (FA), high-dimensional normalization using the FA, and high-dimensional normalization using full tensor information. Each method was assessed in terms of its ability to detect significant differences between ALS patients and controls. Our findings suggest that inadequate normalization with low-dimensional approaches can result in insufficient removal of shape differences which in turn can confound FA differences in a complex manner, and that utilizing high-dimensional normalization can both significantly minimize the confounding effect of shape differences to FA differences and provide a more complete description of WM differences in terms of both size and tissue architecture differences. We also found that high-dimensional approaches, by leveraging full tensor features instead of tensor-derived indices, can further improve the alignment of WM tracts.

Journal ArticleDOI
TL;DR: This approach combines all of the benefits of minimal path techniques such as global minimizers, fast computation, and powerful incorporation of user input, while also having the capability to represent and detect vessel surfaces directly which so far has been a feature restricted to active contour and surface techniques.
Abstract: In this paper, we propose an innovative approach to the segmentation of tubular structures. This approach combines all of the benefits of minimal path techniques such as global minimizers, fast computation, and powerful incorporation of user input, while also having the capability to represent and detect vessel surfaces directly which so far has been a feature restricted to active contour and surface techniques. The key is to represent the trajectory of a tubular structure not as a 3-D curve but to go up a dimension and represent the entire structure as a 4-D curve. Then we are able to fully exploit minimal path techniques to obtain global minimizing trajectories between two user supplied endpoints in order to reconstruct tubular structures from noisy or low contrast 3-D data without the sensitivity to local minima inherent in most active surface techniques. In contrast to standard purely spatial 3-D minimal path techniques, however, we are able to represent a full tubular surface rather than just a curve which runs through its interior. Our representation also yields a natural notion of a tube's "central curve." We demonstrate and validate the utility of this approach on magnetic resonance (MR) angiography and computed tomography (CT) images of coronary arteries.

Journal ArticleDOI
TL;DR: An automatic system is presented to find the location of the major anatomical structures in color fundus photographs; the optic disc, the macula, and the vascular arch by fitting a single point-distribution-model to the image, that contains points on each structure.
Abstract: An automatic system is presented to find the location of the major anatomical structures in color fundus photographs; the optic disc, the macula, and the vascular arch. These structures are found by fitting a single point-distribution-model to the image, that contains points on each structure. The method can handle optic disc and macula centered images of both the left and the right eye. The system uses a cost function, which is based on a combination of both global and local cues, to find the correct position of the model points. The global terms in the cost function are based on the orientation and width of the vascular pattern in the image. The local term is derived from the image structure around the points of the model. To optimize the fit of the point-distribution-model to an image, a sophisticated combination of optimization processes is proposed which combines optimization in the parameter space of the model and in the image space, where points are moved directly. Experimental results are presented demonstrating that our specific choices for the cost function components and optimization scheme are needed to obtain good results. The system was developed and trained on a set of 500 screening images, and tested on a completely independent set of 500 screening images. In addition to this the system was also tested on a separate set of 100 pathological images. In the screening set it was able to find the vascular arch in 93.2%, the macula in 94.4%, the optic disc location in 98.4% and whether it is dealing with a left or right eye in 100% of all tested cases. For the pathological images test set, this was 77.0%, 92.0%, 94.0%, and 100% respectively

Journal ArticleDOI
TL;DR: An intensity renormalization procedure is introduced that automatically adjusts the prior atlas intensity model to new input data and reduces the sensitivity of the whole brain segmentation method to changes in scanner platforms and improves its accuracy and robustness.
Abstract: Atlas-based approaches have demonstrated the ability to automatically identify detailed brain structures from 3-D magnetic resonance (MR) brain images. Unfortunately, the accuracy of this type of method often degrades when processing data acquired on a different scanner platform or pulse sequence than the data used for the atlas training. In this paper, we improve the performance of an atlas-based whole brain segmentation method by introducing an intensity renormalization procedure that automatically adjusts the prior atlas intensity model to new input data. Validation using manually labeled test datasets has shown that the new procedure improves the segmentation accuracy (as measured by the Dice coefficient) by 10% or more for several structures including hippocampus, amygdala, caudate, and pallidum. The results verify that this new procedure reduces the sensitivity of the whole brain segmentation method to changes in scanner platforms and improves its accuracy and robustness, which can thus facilitate multicenter or multisite neuroanatomical imaging studies

Journal ArticleDOI
TL;DR: The improvement in intra-myocardial strain measurements due to temporal fitting is apparent in strain histograms, and also in identifying regions of dysfunctional myocardium in studies of patients with infarcts.
Abstract: Displacement encoding with stimulated echoes (DENSE) encodes myocardial tissue displacement into the phase of the MR image. Cine DENSE allows for rapid quantification of myocardial displacement at multiple cardiac phases through the majority of the cardiac cycle. For practical sensitivities to motion, relatively high displacement encoding frequencies are used and phase wrapping typically occurs. In order to obtain absolute measures of displacement, a two-dimensional (2-D) quality-guided phase unwrapping algorithm was adapted to unwrap both spatially and temporally. Both a fully automated algorithm and a faster semi-automated algorithm are proposed. A method for computing the 2-D trajectories of discrete points in the myocardium as they move through the cardiac cycle is introduced. The error in individual displacement measurements is reduced by fitting a time series to sequential displacement measurements along each trajectory. This improvement is in turn reflected in strain maps, which are derived directly from the trajectories. These methods were validated both in vivo and on a rotating phantom. Further measurements were made to optimize the displacement encoding frequency and to estimate the baseline strain noise both on the phantom and in vivo. The fully automated phase unwrapping algorithm was successful for 767 out of 800 images (95.9%), and the semi-automated algorithm was successful for 786 out of 800 images (98.3%). The accuracy of the tracking algorithm for typical cardiac displacements on a rotating phantom is 0.24plusmn0.15mm. The optimal displacement encoding frequency is in the region of 0.1 cycles/mm, and, for 2 scans of 17-s duration, the strain noise after temporal fitting was estimated to be 2.5plusmn3.0% at end-diastole, 3.1plusmn3.1% at end-systole, and 5.3plusmn5.0% in mid-diastole. The improvement in intra-myocardial strain measurements due to temporal fitting is apparent in strain histograms, and also in identifying regions of dysfunctional myocardium in studies of patients with infarcts

Journal ArticleDOI
TL;DR: Comparisons empirically suggest that nonnegative least squares method is the technique of choice for the multifiber reconstruction problem in the presence of intravoxel orientational heterogeneity, and several deconvolution schemes towards achieving stable, sparse, and accurate solutions are investigated.
Abstract: Diffusion magnetic resonance imaging (MRI) is a relatively new imaging modality which is capable of measuring the diffusion of water molecules in biological systems noninvasively. The measurements from diffusion MRI provide unique clues for extracting orientation information of brain white matter fibers and can be potentially used to infer the brain connectivity in vivo using tractography techniques. Diffusion tensor imaging (DTI), currently the most widely used technique, fails to extract multiple fiber orientations in regions with complex microstructure. In order to overcome this limitation of DTI, a variety of reconstruction algorithms have been introduced in the recent past. One of the key ingredients in several model-based approaches is deconvolution operation which is presented in a unified deconvolution framework in this paper. Additionally, some important computational issues in solving the deconvolution problem that are not addressed adequately in previous studies are described in detail here. Further, we investigate several deconvolution schemes towards achieving stable, sparse, and accurate solutions. Experimental results on both simulations and real data are presented. The comparisons empirically suggest that nonnegative least squares method is the technique of choice for the multifiber reconstruction problem in the presence of intravoxel orientational heterogeneity.

Journal ArticleDOI
TL;DR: A simulation platform for generating synthetic images of fluorescence-stained cell populations with realistic properties that enable the validation of analysis methods for automated image cytometry and comparison of their performance is presented.
Abstract: Fluorescence microscopy combined with digital imaging constructs a basic platform for numerous biomedical studies in the field of cellular imaging. As the studies relying on analysis of digital images have become popular, the validation of image processing methods used in automated image cytometry has become an important topic. Especially, the need for efficient validation has arisen from emerging high-throughput microscopy systems where manual validation is impractical. We present a simulation platform for generating synthetic images of fluorescence-stained cell populations with realistic properties. Moreover, we show that the synthetic images enable the validation of analysis methods for automated image cytometry and comparison of their performance. Finally, we suggest additional usage scenarios for the simulator. The presented simulation framework, with several user-controllable parameters, forms a versatile tool for many kinds of validation tasks, and is freely available at http://www.cs.tut.fi/sgn/csb/simcep.

Journal ArticleDOI
TL;DR: A new algorithm based on the symmetry properties of the projection and backprojection processes is developed, especially in the 3-D OSEM algorithm where multiples of projection andBackprojection are required, thereby effectively reducing the total image reconstruction time to a few minutes.
Abstract: Remarkable progress in positron emission tomography (PET) development has occurred in recent years, in hardware, software, and computer implementation of image reconstruction. Recent development in PET scanners such as the high-resolution research tomograph (HRRT) developed by CTI (now Siemens) represents such a case and is capable of greatly enhanced resolution as well as sensitivity. In these PET scanners, the amount of coincidence line data collected contains more than 4.5times109 coincidence lines of response generated by as many nuclear detectors as 120 000. This formidable amount of data and the reconstruction of this data set pose a real problem in HRRT and have also been of the major bottle neck in further developments of high resolution PET scanners as well as their applications. In these classes of PET scanners, therefore, obtaining one set of reconstructed images often requires many hours of image reconstruction. For example, in HRRT with full data collection in a normal brain scan (using SPAN 3), the image reconstruction time is close to 80 niin, making it practically impossible to attempt any list-mode-based dynamic imaging since the image reconstruction time would take many days (as much as 43 h or more for 32-frame dynamic image reconstruction). To remedy this data-handling problem in image reconstruction, we developed a new algorithm based on the symmetry properties of the projection and backprojection processes, especially in the 3-D OSEM algorithm where multiples of projection and back-projection are required. In addition, the single-instruction multiple-data (SIMD) technique also allowed us to successfully incorporate the symmetry properties mentioned above, thereby effectively reducing the total image reconstruction time to a few minutes. We refer to this technique as the symmetry and SIMD-based projection-backprojection (SSP) technique or algorithm and the details of the technique will be discussed and an example of the application of the technique to the HRRT's OSEM algorithm will be presented as a demonstration.

Journal ArticleDOI
TL;DR: A rigorous mathematical analyses of the Jacobian maps are provided, and it is argued that logarithmic transformation is crucial for analyzing Jacobian values representing morphometric differences, to motivate a new numerical method to construct unbiased nonlinear image registration.
Abstract: Maps of local tissue compression or expansion are often computed by comparing magnetic resonance imaging (MRI) scans using nonlinear image registration. The resulting changes are commonly analyzed using tensor-based morphometry to make inferences about anatomical differences, often based on the Jacobian map, which estimates local tissue gain or loss. Here, we provide rigorous mathematical analyses of the Jacobian maps, and use them to motivate a new numerical method to construct unbiased nonlinear image registration. First, we argue that logarithmic transformation is crucial for analyzing Jacobian values representing morphometric differences. We then examine the statistical distributions of log-Jacobian maps by defining the Kullback-Leibler (KL) distance on material density functions arising in continuum-mechanical models. With this framework, unbiased image registration can be constructed by quantifying the symmetric KL-distance between the identity map and the resulting deformation. Implementation details, addressing the proposed unbiased registration as well as the minimization of symmetric image matching functionals, are then discussed and shown to be applicable to other registration methods, such as inverse consistent registration. In the results section, we test the proposed framework, as well as present an illustrative application mapping detailed 3-D brain changes in sequential magnetic resonance imaging scans of a patient diagnosed with semantic dementia. Using permutation tests, we show that the symmetrization of image registration statistically reduces skewness in the log-Jacobian map.

Journal ArticleDOI
TL;DR: The visual comparison of despeckled in vivo ultrasound images from liver and carotid artery shows that the proposed LPND method could effectively preserve edges and detailed structures while thoroughly suppressing speckle.
Abstract: A new speckle reduction method, i.e., Laplacian pyramid-based nonlinear diffusion (LPND), is proposed for medical ultrasound imaging. With this method, speckle is removed by nonlinear diffusion filtering of bandpass ultrasound images in Laplacian pyramid domain. For nonlinear diffusion in each pyramid layer, a gradient threshold is automatically determined by a variation of median absolute deviation (MAD) estimator. The performance of the proposed LPND method has been compared with that of other speckle reduction methods, including the recently proposed speckle reducing anisotropic diffusion (SRAD) and nonlinear coherent diffusion (NCD). In simulation and phantom studies, an average gain of 1.55 dB and 1.34 dB in contrast-to-noise ratio was obtained compared to SRAD and NCD, respectively. The visual comparison of despeckled in vivo ultrasound images from liver and carotid artery shows that the proposed LPND method could effectively preserve edges and detailed structures while thoroughly suppressing speckle. These preliminary results indicate that the proposed speckle reduction method could improve image quality and the visibility of small structures and fine details in medical ultrasound imaging

Journal ArticleDOI
TL;DR: The numerical values of the image quality metrics along with the qualitative analysis results indicated the good feature preservation performance of the complex diffusion process, as desired for better diagnosis in medical imaging processing.
Abstract: A comparison between two nonlinear diffusion methods for denoising OCT images is performed. Specifically, we compare and contrast the performance of the traditional nonlinear Perona-Malik filter with a complex diffusion filter that has been recently introduced by Gilboa . The complex diffusion approach based on the generalization of the nonlinear scale space to the complex domain by combining the diffusion and the free Schrodinger equation is evaluated on synthetic images and also on representative OCT images at various noise levels. The performance improvement over the traditional nonlinear Perona-Malik filter is quantified in terms of noise suppression, image structural preservation and visual quality. An average signal-to-noise ratio (SNR) improvement of about 2.5 times and an average contrast to noise ratio (CNR) improvement of 49% was obtained while mean structure similarity (MSSIM) was practically not degraded after denoising. The nonlinear complex diffusion filtering can be applied with success to many OCT imaging applications. In summary, the numerical values of the image quality metrics along with the qualitative analysis results indicated the good feature preservation performance of the complex diffusion process, as desired for better diagnosis in medical imaging processing

Journal ArticleDOI
TL;DR: A novel methodology, Snapshot magnetic resonance imaging with volume reconstruction (SVR) has been developed for imaging moving subjects at high resolution and high signal-to-noise ratio (SNR) and fine structure of the in-utero fetal brain is clearly revealed for the first time.
Abstract: Motion degrades magnetic resonance (MR) images and prevents acquisition of self-consistent and high-quality volume images. A novel methodology, Snapshot magnetic resonance imaging (MRI) with volume reconstruction (SVR) has been developed for imaging moving subjects at high resolution and high signal-to-noise ratio (SNR). The method combines registered 2D slices from sequential dynamic single-shot scans. The SVR approach requires that the anatomy in question is not changing shape or size and is moving at a rate that allows snapshot images to be acquired. After imaging the target volume repeatedly to guarantee sufficient sampling every where, a robust slice-to-volume registration method has been implemented that achieves alignment of each slice within 0.3 mm in the examples tested. Multilevel scattered interpolation has been used to obtain high-fidelity reconstruction with root-mean-square (rms) error that is less than the noise level in the images. The SVR method has been performed successfully for brain studies on subjects that cannot stay still, and in some cases were moving substantially during scanning. For example, awake neonates, deliberately moved adults and, especially, on fetuses, for which no conventional high-resolution 3D method is currently available. Fine structure of the in-utero fetal brain is clearly revealed for the first time and substantial SNR improvement is realized by having many individually acquired slices contribute to each voxel in the reconstructed image.

Journal ArticleDOI
TL;DR: It is shown that differences between healthy and osteoarthritic populations are statistically significant using the cartilage volume and surface area estimates, which suggests that low-field MRI analysis can become a useful, affordable tool in clinical studies.
Abstract: We present a fully automatic method for articular cartilage segmentation from magnetic resonance imaging (MRI) which we use as the foundation of a quantitative cartilage assessment. We evaluate our method by comparisons to manual segmentations by a radiologist and by examining the interscan reproducibility of the volume and area estimates. Training and evaluation of the method is performed on a data set consisting of 139 scans of knees with a status ranging from healthy to severely osteoarthritic. This is, to our knowledge, the only fully automatic cartilage segmentation method that has good agreement with manual segmentations, an interscan reproducibility as good as that of a human expert, and enables the separation between healthy and osteoarthritic populations. While high-field scanners offer high-quality imaging from which the articular cartilage have been evaluated extensively using manual and automated image analysis techniques, low-field scanners on the other hand produce lower quality images but to a fraction of the cost of their high-field counterpart. For low-field MRI, there is no well-established accuracy validation for quantitative cartilage estimates, but we show that differences between healthy and osteoarthritic populations are statistically significant using our cartilage volume and surface area estimates, which suggests that low-field MRI analysis can become a useful, affordable tool in clinical studies

Journal ArticleDOI
TL;DR: The WFS representation is a data smoothing technique that provides the explicit smooth functional estimation of unknown cortical boundary as a linear combination of basis functions and is applied in quantifying the amount of gray matter in a group of high functioning autistic subjects.
Abstract: We present a novel weighted Fourier series (WFS) representation for cortical surfaces. The WFS representation is a data smoothing technique that provides the explicit smooth functional estimation of unknown cortical boundary as a linear combination of basis functions. The basic properties of the representation are investigated in connection with a self-adjoint partial differential equation and the traditional spherical harmonic (SPHARM) representation. To reduce steep computational requirements, a new iterative residual fitting (IRF) algorithm is developed. Its computational and numerical implementation issues are discussed in detail. The computer codes are also available at http://www.stat.wisc.edu/ ~mchung/softwares/weighted-SPHARM/weighted-SPHARM.html . As an illustration, the WFS is applied in quantifying the amount of gray matter in a group of high functioning autistic subjects. Within the WFS framework, cortical thickness and gray matter density are computed and compared

Journal ArticleDOI
TL;DR: Methods such as principal component analysis (PCA) of the initial momentum leads to analysis of anatomical shape and form in target images without being restricted to small-deformation assumption in the analysis of linear displacements.
Abstract: In large-deformation diffeomorphic metric mapping (LDDMM), the diffeomorphic matching of images are modeled as evolution in time, or a flow, of an associated smooth velocity vector field v controlling the evolution. The initial momentum parameterizes the whole geodesic and encodes the shape and form of the target image. Thus, methods such as principal component analysis (PCA) of the initial momentum leads to analysis of anatomical shape and form in target images without being restricted to small-deformation assumption in the analysis of linear displacements. We apply this approach to a study of dementia of the Alzheimer type (DAT). The left hippocampus in the DAT group shows significant shape abnormality while the right hippocampus shows similar pattern of abnormality. Further, PCA of the initial momentum leads to correct classification of 12 out of 18 DAT subjects and 22 out of 26 control subjects

Journal ArticleDOI
TL;DR: The statistical comparison between the canine atlas and a standard human cardiac DT-MRI shows a better stability of the fiber orientations than their laminar sheet orientations between the two species.
Abstract: We propose a unified computational framework to build a statistical atlas of the cardiac fiber architecture from diffusion tensor magnetic resonance images (DT-MRIs). We apply this framework to a small database of nine ex vivo canine hearts. An average cardiac fiber architecture and a measure of its variability are computed using most recent advances in diffusion tensor statistics. This statistical analysis confirms the already established good stability of the fiber orientations and a higher variability of the laminar sheet orientations within a given species. The statistical comparison between the canine atlas and a standard human cardiac DT-MRI shows a better stability of the fiber orientations than their laminar sheet orientations between the two species. The proposed computational framework can be applied to larger databases of cardiac DT-MRIs from various species to better establish intraspecies and interspecies statistics on the anatomical structure of cardiac fibers. This information will be useful to guide the adjustment of average fiber models onto specific patients from in vivo anatomical imaging modalities.

Journal ArticleDOI
TL;DR: Simulations demonstrate the able to correct the cupping artifact due to beam hardening and the ability to reduce streaking artifacts that arise from beamhardening and background events.
Abstract: A family of alternating minimization algorithms for finding maximum-likelihood estimates of attenuation functions in transmission X-ray tomography is described. The model from which the algorithms are derived includes polyenergetic photon spectra, background events, and nonideal point spread functions. The maximum-likelihood image reconstruction problem is reformulated as a double minimization of the I-divergence. A novel application of the convex decomposition lemma results in an alternating minimization algorithm that monotonically decreases the objective function. Each step of the minimization is in closed form. The family of algorithms includes variations that use ordered subset techniques for increasing the speed of convergence. Simulations demonstrate the ability to correct the cupping artifact due to beam hardening and the ability to reduce streaking artifacts that arise from beam hardening and background events

Journal ArticleDOI
TL;DR: Overall, MCL is a promising computer-assisted detection strategy for screening mammograms to identify malignant masses while maintaining the detection rate of benign masses considerably lower.
Abstract: We propose a technique for the automated detection of malignant masses in screening mammography. The technique is based on the presence of concentric layers surrounding a focal area with suspicious morphological characteristics and low relative incidence in the breast region. Mammographic locations with high concentration of concentric layers with progressively lower average intensity are considered suspicious deviations from normal parenchyma. The multiple concentric layers (MCLs) technique was trained and tested using the craniocaudal views of 270 mammographic cases with biopsy proven malignant masses from the digital database of screening mammography. One-half of the available cases were used for optimizing the parameters of the detection algorithm. The remaining cases were used for testing. During testing, malignant masses were detected with 92%, 88%, and 81% sensitivity at 5.4, 2.4, and 0.6 false positive marks per image. Testing on 82 normal screening mammograms showed a false positive rate of 5.0, 1.7, and 0.2 marks per image at the previously reported operating points. Furthermore, additional evaluation on 135 benign cases produced a significantly lower detection rate for benign masses (61.6%, 58.3%, and 43.7% at 5.1, 2.8, and 1.2 false positives per image, respectively). Overall, MCL is a promising computer-assisted detection strategy for screening mammograms to identify malignant masses while maintaining the detection rate of benign masses considerably lower.

Journal ArticleDOI
TL;DR: This work describes a method for volumetric registration that also produces an accurate one-to-one point correspondence between cortical surfaces by first parameterizing and aligning the cortical surfaces using sulcal landmarks and then using a constrained harmonic mapping to extend this surface correspondence to the entire cortical volume.
Abstract: In order to compare anatomical and functional brain imaging data across subjects, the images must first be registered to a common coordinate system in which anatomical features are aligned. Intensity-based volume registration methods can align subcortical structures well, but the variability in sulcal folding patterns typically results in misalignment of the cortical surface. Conversely, surface-based registration using sulcal features can produce excellent cortical alignment but the mapping between brains is restricted to the cortical surface. Here we describe a method for volumetric registration that also produces an accurate one-to-one point correspondence between cortical surfaces. This is achieved by first parameterizing and aligning the cortical surfaces using sulcal landmarks. We then use a constrained harmonic mapping to extend this surface correspondence to the entire cortical volume. Finally, this mapping is refined using an intensity-based warp. We demonstrate the utility of the method by applying it to T1-weighted magnetic resonance images (MRIs). We evaluate the performance of our proposed method relative to existing methods that use only intensity information; for this comparison we compute the intersubject alignment of expert-labeled subcortical structures after registration.

Journal ArticleDOI
TL;DR: A method for vessel segmentation and tracking in ultrasound images using Kalman filters is presented, and results indicate that mean errors between segmented contours and expert tracings are on the order of 1%-2% of the maximum feature dimension.
Abstract: A method for vessel segmentation and tracking in ultrasound images using Kalman filters is presented. A modified Star-Kalman algorithm is used to determine vessel contours and ellipse parameters using an extended Kalman filter with an elliptical model. The parameters can be used to easily calculate the transverse vessel area which is of clinical use. A temporal Kalman filter is used for tracking the vessel center over several frames, using location measurements from a handheld sensorized ultrasound probe. The segmentation and tracking have been implemented in real-time and validated using simulated ultrasound data with known features and real data, for which expert segmentation was performed. Results indicate that mean errors between segmented contours and expert tracings are on the order of 1%-2% of the maximum feature dimension, and that the transverse cross-sectional vessel area as computed from estimated ellipse parameters a, b as determined by our algorithm is within 10% of that determined by experts. The location of the vessel center was tracked accurately for a range of speeds from 1.4 to 11.2 mm/s.