scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Earth Sciences in 2005"


Journal ArticleDOI
TL;DR: In this paper, the main Zagros orogen is shown to be deeply rooted, possibly to Moho depths, and the suture zone effectively runs along the MZT.
Abstract: The Zagros orogen provides a unique opportunity within the Alpine system to evaluate the interplay between a young Tertiary collision and earlier subduction/obduction processes. Within the Crush zone and the Sanandaj–Sirjan (internal) zone separating the Zagros Fold belt from Central Iran, we document several major tectonic events taking place at the end of the Cretaceous, of the Eocene and from the Mio–Pliocene onwards (ca. <20–15 Ma). Contrary to recent interpretations, our data (cross-sections and description of the overall deformation style) strongly suggest that the Main Zagros Thrust (MZT) is deeply rooted, possibly to Moho depths, and that the suture zone effectively runs along the MZT. Field observations show that the final resorption of the oceanic domain took place slightly after 35 Ma and that collision must have started before ca. 23–25 Ma in northern Zagros. The shortening rate across the Crush zone since the Mid-Miocene (20–15 Ma) is estimated at a minimum 3–4 mm/year. Shear movements in the Crush zone during the Eocene–Oligocene period and extensional/strike-slip movements in the internal zones during the late Cretaceous point to an oblique setting early in the convergence history. A geotectonic scenario for convergence from the time of obduction to the present is finally proposed.

885 citations


Journal ArticleDOI
TL;DR: Paleoenvironmental analysis reveals an evolutionary history controlled by tectonic and climatic changes as mentioned in this paper, which is related to the evolution of the Central Andes and to the activity of the Pacific margin, owing to its geographic location.
Abstract: The rift history of the Salta basin is related to the evolution of the Central Andes and to the activity of the Pacific margin, owing to its geographic location. Sedimentation occurred from the Neocomian to the Paleogene, with deposits reaching up to 5,000 m in thickness. Paleoenvironmental analysis reveals an evolutionary history controlled by tectonic and climatic changes. Isolated grabens characterized the early synrift stage; differential subsidence provoked distinct environments in the southern and northern subbasins. In the southern subbasins, alluvial-fan, fluvial-fan and lacustrine deposits prevail, whilst in the northern subbasins eolian and fluvial environments dominate. During the Maastrichtian, two major factors controlled the basin fill: the decrease in tectonic subsidence and a relative sea-level rise as recorded in South America. An extensive and shallow Atlantic marine ingression installed a carbonate system coincident with mainly humid conditions until the Danian. Until the Middle Eocene, the fluvial and lacustrine environmental evolution of the sag basin was controlled especially by the alternation of temperate with dry and humid periods. Paleontological records reflect these climatic changes and show their relationship to the sedimentation regime.

185 citations


Journal ArticleDOI
TL;DR: In this article, the authors interpret these cycles as a response to orbital obliquity variation and estimate the duration of the complete excursion as 440 k-year or one long eccentricity cycle.
Abstract: High sedimentation rates (up to 12 cm/kyear) of laminated organic carbon-rich biogenic limestones in the Tarfaya Basin provide an unusually high (millennial) resolution record of the late Cenomanian oceanic anoxic event (OAE-2). The global positive carbon-isotope excursion across the Cenomanian-Turonian corresponds to 11 light/dark sedimentary cycles. We interpret these cycles as a response to orbital obliquity variation and estimate the duration of the complete excursion as 440 kyear or one long eccentricity cycle. On this time-scale, the main increase in delta(13)C values occurred over a short time interval of less than 20 kyear in the late Cenomanian and reached a first maximum approximately 15 kyear prior to the bulk (mainly coccoliths) delta(18)O-derived sea surface maximum temperature that occurs coeval to the extinction of Rotalipora cushmani. Organic carbon-accumulation rates follow obliquity cycles, reaching a maximum approximately 10 kyear after the last occurrence of R. cushmani, then slowly decreasing during the early Turonian. Thus, the maximum temperature and the maximum organic carbon accumulation in the Tarfaya Basin lagged by at least 15 kyear behind the global carbon-isotope shift and a proposed reduction of atmospheric CO(2) content. The climate change across the Cenomanian/Turonian boundary probably occurred independent of CO(2) levels and may have been controlled by different greenhouse gases (water vapour and methane) and changes in ocean circulation (i.e., opening of the Equatorial Atlantic gateway).

138 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented twenty paleogeographic maps for Middle Eocene to Late Pliocene times according to the stratigraphical data given in the companion paper by Berger et al. this volume.
Abstract: Twenty paleogeographic maps are presented for Middle Eocene (Lutetian) to Late Pliocene times according to the stratigraphical data given in the companion paper by Berger et al. this volume. Following a first lacustrine-continental sedimentation during the Middle Eocene, two and locally three Rupelian transgressive events were identified with the first corresponding with the Early Rupelian Middle Pechelbronn beds and the second and third with the Late Rupelian ≪ Serie Grise ≫ (Fischschiefer and equivalents). During the Early Rupelian (Middle Pechelbronn beds), a connection between North Sea and URG is clearly demonstrated, but a general connection between North Sea, URG and Paratethys, via the Alpine sea, is proposed, but not proved, during the late Rupelian. Whereas in the southern URG, a major hiatus spans Early Aquitanian to Pliocene times, Early and Middle Miocene marine, brackish and freshwater facies occur in the northern URG and in the Molasse Basin (OMM, OSM); however, no marine connections between these basins could be demonstrated during this time. After the deposition of the molasse series, a very complex drainage pattern developed during the Late Miocene and Pliocene, with a clear connection to the Bresse Graben during the Piacenzian (Sundgau gravels). During the Late Miocene, Pliocene and Quaternary sedimentation persisted in the northern URG with hardly any interruptions. The present drainage pattern of the Rhine river (from Alpine area to the lower Rhine Embayment) was not established before the Early Pleistocene.

130 citations


Journal ArticleDOI
TL;DR: The authors presented a general stratigraphic synthesis for the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene times.
Abstract: We present a general stratigraphic synthesis for the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene times. The stratigraphic data were compiled both from literature and from research carried out by the authors during the past 6 years ; an index of the stratigraphically most important localitites is provided. We distinguish 14 geographical areas from the Helvetic domain in the South to the Hanau Basin in the North. For each geographical area, we give a synthesis of the biostratigraphy, lithofacies, and chronostratigraphic ranges. The relationships between this stratigraphic record and the global sea-level changes are generally disturbed by the geodynamic (e.g., subsidence) evolution of the basins. However, global sea-level changes probably affected the dynamic of transgression–regression in the URG (e.g., Middle Pechelbronn Beds and Serie Grise corresponding with sea-level rise between Ru1/Ru2 and Ru2/Ru3 sequences, respectively) as well as in the Molasse basin (regression of the UMM corresponding with the sea-level drop at the Ch1 sequence). The URGENT-project (Upper Rhine Graben evolution and neotectonics) provided an unique opportunity to carry out and present this synthesis. Discussions with scientists addressing sedimentology, tectonics, geophysics and geochemistry permitted the comparison of the sedimentary history and stratigraphy of the basin with processes controlling its geodynamic evolution. Data presented here back up the palaeogeographic reconstructions presented in a companion paper by the same authors (see Berger et al. in Int J Earth Sci 2005).

110 citations


Journal ArticleDOI
TL;DR: In this article, the authors used seismic interpretation and retro-deformation to obtain a better understanding of salt tectonics, structural control, and sedimentary response in the Central European Basin.
Abstract: The Central European Basin is a classic area of salt tectonics, characterized by heterogeneous structural evolution and complex salt movement history. We studied an area on its SW margin, based on prestack depth-migrated 2D and 3D seismic data. We use seismic interpretation and retro-deformation to obtain a better understanding of salt tectonics, structural control, and sedimentary response in this region. The first phase of salt tectonic evolution started with two main events of NW–SE extension and rafting in the Triassic before the Upper Bunter and before the Upper Muschelkalk. Rafting was accompanied by first salt diapirism and an increased sedimentary thickness adjacent to the salt structure. After salt supply ceased updip to the salt structure, a mini-basin grew in the intra-raft area. This sedimentary differential loading caused salt movement and growth of a pillow structure basinward. The second phase of salt movement was initiated by the formation of a NNW–SSE striking basement graben in the Middle Keuper that triggered reactive diapirism, the breakthrough of the pillow’s roof and salt extrusion. The following downbuilding process was characterized by sedimentary wedges with basal unconformities, onlap structures and salt extrusions that ceased in the Jurassic. The third and latest phase of salt tectonic evolution was activated in the Late Cretaceous to Lower Tertiary by compressional tectonics indicated by salt rise and a small horizontal shortening of the diapir. The interpreted salt tectonic processes and the resulting geometries can now be better tied in with the regional heterogeneous framework of the basin.

105 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Th-Pb ion microprobe method to date the Cambro-Ordovician monazite inclusions in Cine and Central Menderes garnets.
Abstract: The Menderes Massif experienced polyphase deformation, but distinguishing Pan-African events from Alpine tectono-metamorphic evolution, and discriminating Eocene–Oligocene shortening from recent extension remain controversial. To address this, monazite in garnet-bearing rocks from the massif’s Gordes, Central, and Cine sections were dated in thin section (in situ) using the Th–Pb ion microprobe method. Cambro–Ordovician monazite inclusions in Cine and Central Menderes Massif garnets are ~450 m.y. older than matrix grains. Monazites in reaction with allanite from the Kuzey Detachment, which bounds the northern edge of the Central Menderes Massif, are 17±5 Ma and 4.5±1.0 Ma. The Pliocene result shows that dating of monazite can record the time of extension. The Kuzey Detachment might have exhumed rocks a lateral distance of ~53 km at a rapid rate of ~12 mm/year assuming the present ~20° ramp dip, Pliocene monazite crystallization at ~450°C, and a geothermal gradient of ~25°C/km. Assuming an angle of 60°, the rate decreases to ~5 mm/year, with the detachment surface at ~21 km depth in the Pliocene. Two Gordes Massif monazites show a similar allanite–monazite reaction relationship and are 29.6±1.1 Ma and 27.9±1.0 Ma, suggesting that the Cenozoic extension in the Gordes Massif, and possibly the entire Menderes Massif, might have begun in the Late Oligocene.

102 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compare the modes of Late-Cretaceous-Early Tertiary inversion within the North German and Polish basins and demonstrate the significance of an inherited basement structure regardless of its relationship to the position of the basin axis.
Abstract: Several selected seismic lines are used to show and compare the modes of Late-Cretaceous–Early Tertiary inversion within the North German and Polish basins. These seismic data illustrate an important difference in the allocation of major zones of basement (thick-skinned) deformation and maximum uplift within both basins. The most important inversion-related uplift of the Polish Basin was localised in its axial part, the Mid-Polish Trough, whereas the basement in the axial part of the North German Basin remained virtually flat. The latter was uplifted along the SW and to a smaller degree the NE margins of the North German Basin, presently defined by the Elbe Fault System and the Grimmen High, respectively. The different location of the basement inversion and uplift within the North German and Polish basins is interpreted to reflect the position of major zones of crustal weakness represented by the WNW-ESE trending Elbe Fault System and by the NW-SE striking Teisseyre-Tornquist Zone, the latter underlying the Mid-Polish Trough. Therefore, the inversion of the Polish and North German basins demonstrates the significance of an inherited basement structure regardless of its relationship to the position of the basin axis. The inversion of the Mid-Polish Trough was connected with the reactivation of normal basement fault zones responsible for its Permo-Mesozoic subsidence. These faults zones, inverted as reverse faults, facilitated the uplift of the Mid-Polish Trough in the order of 1–3 km. In contrast, inversion of the North German Basin rarely re-used structures active during its subsidence. Basement inversion and uplift, in the range of 3–4 km, was focused at the Elbe Fault System which has remained quiescent in the Triassic and Jurassic but reproduced the direction of an earlier Variscan structural grain. In contrast, N-S oriented Mesozoic grabens and troughs in the central part of the North German Basin avoided significant inversion as they were oriented parallel to the direction of the inferred Late Cretaceous–Early Tertiary compression. The comparison of the North German and Polish basins shows that inversion structures can follow an earlier subsidence pattern only under a favourable orientation of the stress field. A thick Zechstein salt layer in the central parts of the North German Basin and the Mid-Polish Trough caused mechanical decoupling between the sub-salt basement and the supra-salt sedimentary cover. Resultant thin-skinned inversion was manifested by the formation of various structures developed entirely in the supra-salt Mesozoic–Cenozoic succession. The Zechstein salt provided a mechanical buffer accommodating compressional stress and responding to the inversion through salt mobilisation and redistribution. Only in parts of the NGB and MPT characterised by either thin or missing Zechstein evaporites, thick-skinned inversion directly controlled inversion-related deformations of the sedimentary cover. Inversion of the Permo-Mesozoic fill within the Mid-Polish Trough was achieved by a regional elevation above uplifted basement blocks. Conversely, in the North German Basin, horizontal stress must have been transferred into the salt cover across the basin from its SW margin towards the basins centre. This must be the case since compressional deformations are concentrated mostly above the salt and no significant inversion-related basement faults are seismically detected apart from the basin margins. This strain decoupling in the interior of the North German Basin was enhanced by the presence of the Elbe Fault System which allowed strain localization in the basin floor due to its orientation perpendicular to the inferred Late Cretaceous–Early Tertiary far-field compression.

93 citations


Journal ArticleDOI
TL;DR: In this paper, the early Mesozoic volcanic sequence in southern Jiangxi Province, South China has been studied and an early rifting model was proposed to account for the early mesozoic volcanism in the area.
Abstract: Elemental and Sr–Nd isotopic results are presented for the early Mesozoic volcanic sequence (~172 Ma) in southern Jiangxi Province, South China. The sequence is voluminously composed of ~45% subalkaline basaltic rocks (group 1), <5% high-mg andesite–dacites (group 2) and ~50% rhyolites (group 3). The group 1 rocks are characterized by (La/Yb)cn = 3.8–7.2, Eu/Eu* = 0.65–1.15, Nb/La = 0.64–0.99, 87Sr/86Sr(t) = 0.70602~0.70822 and eNd(t) = −1.63 to +0.11, similar to those of an EMII-like source. The group 2 rocks have mg=0.42~0.60, SiO2=60.24~66.71%, MgO=2.65~ 5.54%, Ni=24~102 ppm and Cr=84~266 ppm, classified as high-mg andesitic rocks. These rocks are more enriched in LILEs and LREE with more significant negative Eu anomaly (0.63~0.79), are more depleted in HFSEs with Nb/La ratios of 0.40–0.56 and have lower eNd(t) (−9.44 to −7.78) and higher 87Sr/86Sr(t) (0.70985~0.71016), in comparison with the group 1 rocks. They most likely originated from metasomatised veins in the lithospheric mantle. The origination of the group 1 and group 2 magma suggests the development of a peridotite-plus-vein lithospheric mantle during early Mesozoic era beneath the interior of the Cathaysian block. The group 3 rhyolites are characterized by high SiO2 (72.75~77.97%), Zr (99~290 ppm), Hf (3.9~9.7 ppm) and Ga/Al (2.76~3.87) and significant Nb–Ta, Ba–Sr and P–Ti depletions. These rhyolites exhibit Sr–Nd isotopic compositions (87Sr/86Sr(t) = 0.70962~0.71104, eNd(t) = −4.63 to −5.80) similar to the contemporaneous Zhaibei and Pitou A-type granites in the area. Such characteristics suggest that they might be derived from the underplating basaltic magma contaminated by crustal materials. Therefore, an early Mesozoic rifting model in response to intracontinental lithospheric extension is proposed to account for the early Mesozoic volcanism in southern Jiangxi Province, South China.

87 citations


Journal ArticleDOI
TL;DR: The Central Bohemian Plutonic Complex (CBPC) consists of episodically emplaced plutons, the internal fabrics of which recorded tectonic evolution of a continental magmatic arc as mentioned in this paper.
Abstract: The Central Bohemian Plutonic Complex (CBPC) consists of episodically emplaced plutons, the internal fabrics of which recorded tectonic evolution of a continental magmatic arc. The ~354–350 Ma calc-alkaline plutons were emplaced by multiple processes into the upper-crustal Tepla-Barrandian Unit, and their magmatic fabrics recorded increments of regional transpression. Multiple fabrics of the younger, ~346 Ma Blatna pluton recorded both regional transpression and the onset of exhumation of mid-crustal orogenic root (Moldanubian Unit). Continuous exhumation-related deformation during pluton cooling resulted in the development of a wide zone of sub-solidus deformation along the SE margin of the CBPC. Finally, syn-exhumation tabular durbachitic pluton of ultrapotassic composition was emplaced atop the intrusive sequence at ~343–340 Ma, and the ultrapotassic Tabor pluton intruded after exhumation of the orogenic root (~337 Ma). We suggest that the emplacement of plutons during regional transpression in the upper crust produced thermally softened domain which then accommodated the exhumation of the mid-crustal orogenic root, and that the complex nature of the Tepla-Barrandian/Moldanubian boundary is a result of regional transpression in the upper crust, the enhancement of regional deformation in overlapping structural aureoles, the subsequent exhumation of the orogenic root domain, and post-emplacement brittle faulting.

87 citations


Journal ArticleDOI
TL;DR: The microstructure of halite from the subhorizontal, bedded Main Rot Evaporite Member at Hengelo, The Netherlands (AKZO well 382, depth interval of 420-460 m), was studied by transmitted and reflected light microscopy of gamma-irradiation decorated samples.
Abstract: The microstructure of halite from the subhorizontal, bedded Main Rot Evaporite Member at Hengelo, The Netherlands (AKZO well 382, depth interval of 420–460 m), was studied by transmitted and reflected light microscopy of gamma-irradiation decorated samples. Primary microstructures compare favourably with those found in recent ephemeral salt pans. Large, blocky, fluid-inclusion-poor halite grains and elongated chevrons are interpreted to have formed in the saline lake stage, while void-filling clear halite is interpreted to have formed during the desiccation stage of the salt pan. In addition, in all layers the grains are rich in deformation-related substructures such as slip bands and subgrains indicating strains of a few percent. The study of gamma-irradiation decorated thin sections shows that the main recrystallization mechanism is grain boundary migration. Grain boundary migration removes primary fluid inclusions and produces clear, strain-free new grains. Differential stresses as determined by subgrain size piezometry were 0.45–0.97 MPa. The deformation of the salt layers is probably related to Cretaceous inversion in the area.

Journal ArticleDOI
TL;DR: The Rhine Rift System (RRS) is a part of the European Cenozoic Rift System as discussed by the authors and transects the Variscan Orogen, Permo-Carboniferous troughs and Late Permian to Mesozoic thermal sag basins.
Abstract: The Rhine Rift System (RRS) forms part of the European Cenozoic Rift System (ECRIS) and transects the Variscan Orogen, Permo-Carboniferous troughs and Late Permian to Mesozoic thermal sag basins. Crustal and lithospheric thicknesses range in the RRS area between 24–36 km and 50–120 km, respectively. We discuss processes controlling the transformation of the orogenically destabilised Variscan lithosphere into an end-Mesozoic stabilised cratonic lithosphere, as well as its renewed destabilisation during the Cenozoic development of ECRIS. By end-Westphalian times, the major sutures of the Variscan Orogen were associated with 45–60 km deep crustal roots. During the Stephanian-Early Permian, regional exhumation of the Variscides was controlled by their wrench deformation, detachment of subducted lithospheric slabs, asthenospheric upwelling and thermal thinning of the mantle-lithosphere. By late Early Permian times, when asthenospheric temperatures returned to ambient levels, lithospheric thicknesses ranged between 40 km and 80 km, whilst the thickness of the crust was reduced to 28–35 km in response to its regional erosional and local tectonic unroofing and the interaction of mantle-derived melts with its basal parts. Re-equilibration of the lithosphere-asthenosphere system governed the subsidence of Late Permian-Mesozoic thermal sag basins that covered much of the RRS area. By end-Cretaceous times, lithospheric thicknesses had increased to 100–120 km. Paleocene mantle plumes caused renewed thermal weakening of the lithosphere. Starting in the late Eocene, ECRIS evolved in the Pyrenean and Alpine foreland by passive rifting under a collision-related north-directed compressional stress field. Following end-Oligocene consolidation of the Pyrenees, west- and northwest-directed stresses originating in the Alps controlled further development of ECRIS. The RRS remained active until the Present, whilst the southern branch of ECRIS aborted in the early Miocene. Extensional strain across ECRIS amounts to some 7 km. Plume-related thermal thinning of the lithosphere underlies uplift of the Rhenish Massif and Massif Central. Lithospheric folding controlled uplift of the Vosges-Black Forest Arch.

Journal ArticleDOI
TL;DR: In this paper, a control network with levelling profiles across the eastern Rhine Graben fault was installed and measured in the vicinity of the city of Basel in order to measure relative vertical movements and investigate their relationship with seismic events.
Abstract: The southern end of the Upper Rhine Graben is one of the zones in Switzerland where recent crustal movements can be expected because of ongoing seismotectonic processes as witnessed by seismicity clusters occurring in this region. Therefore, in 1973 a control network with levelling profiles across the eastern Rhine Graben fault was installed and measured in the vicinity of the city of Basel in order to measure relative vertical movements and investigate their relationship with seismic events. As a contribution to EUCOR-URGENT, the profiles were observed a third time in the years 2002 and 2003 and connected to the Swiss national levelling network. The results of these local measurements are discussed in terms of accuracy and significance. Furthermore, they are combined and interpreted together with the extensive data set of recent vertical movements in Switzerland (Jura Mountains, Central Plateau and the Alps). In order to be able to prove height changes with precise levelling, their values should amount to at least 3–4 mm (1σ). The present investigations, however, have not shown any significant vertical movements over the past 30 years.

Journal ArticleDOI
TL;DR: Aatite ages indicate a major cooling event in the mid Cretaceous (∼89−72 Ma) reflecting the time of inversion of the Lower Saxony Basin this paper.
Abstract: The southwestern part of the Lower Saxony Basin (LSB) is characterized by gravity and magnetic anomalies and by an extremely high thermal maturity of organic matter. This was for many years attributed to a Late Cretaceous intrusion, but actually deep burial is being debated. The complex thermal history of the area has been studied by fission track analysis. Zircon data provide evidence for widespread (hydro)thermal activity during the Permian and Upper Jurassic/Lower Cretaceous. Apatite ages indicate a major cooling event in the mid Cretaceous (∼89–72 Ma) reflecting the time of inversion of the LSB. During the Cretaceous, the cooling of the basin centre was rapid compared to the basin margins. Apatite fission track ages from borehole samples which are recently within the upper part of the APAZ indicate a young heating of the sedimentary sequences until present.

Journal ArticleDOI
TL;DR: In this article, the authors focused on the behavior of fixed ammonium in clay minerals of organic-rich Palaeozoic sediments in the eastern part of the North German Basin (NGB) as a major source of nitrogen-rich natural gases.
Abstract: In contrast to predominantly hydrocarbon-rich natural gases in the western part of the Central European Basin (CEB), accumulations of natural gases from the eastern part of the North German Basin (NGB) are nitrogen-rich with up to 90% N2. This study is focused on the behaviour of fixed ammonium in clay minerals of organic-rich Palaeozoic sediments in the eastern part of the NGB as a major source of nitrogen-rich natural gases. Carboniferous shales have been investigated for a better understanding of nitrogen fixing during diagenesis, storage during burial and release during devolatilization processes or fluid–rock interactions. The total nitrogen contents in the studied Carboniferous shales of the NGB reach up to 2700 ppm with an inorganic fixed portion (in the form of NH4+–N) of more than 60%. The results of this study indicate an increasing proportion of the mineralogically fixed ammonium with increasing thermal maturity and storage up to catagenetic conditions. The isotopic composition of fixed-NH4 is relatively homogeneous in the majority of the shales and ranges from +1 to +3.5‰. In contrast, samples from the basin centre show a significant decrease in ammonium contents down to 460 ppm coupled with a shift in δ15N up to +5.6‰ suggesting a release of nitrogen on a large scale. Calculation of nitrogen loss and isotopic fractionation indicate that more than 30% of nitrogen was released as ammonium probably as a consequence of fluid-rock interaction with highly saline brines.

Journal ArticleDOI
TL;DR: In this article, the marginal marine and fluvial fill of the Lower Rhine Basin has been investigated and the ingression and subsequent regression of the Cenozoic North Sea is analyzed using the concept of base level cyclicity.
Abstract: In the Cenozoic, the Lower Rhine Basin formed as a rift at the southeastern terminus of the Dutch German Central Graben, while the Rhenish Massif was uplifted. The study focusses on the marginal marine and fluvial fill of the Lower Rhine Basin. A basin model is developed. Support for this study was given by extensive industry outcrop and well data, by new stratigraphical and sedimentological observations. The ingression and subsequent regression of the Cenozoic North Sea is analysed using the concept of base level cyclicity. As the geohistory of the basin was complex, a subsidence curve is constructed. Furthermore, an attempt is made to trace the simultaneous uplift of the Rhenish Massif.

Journal ArticleDOI
TL;DR: In this paper, zircons from granitic dykes and massive host rock (so-called "palite") were used to place constraints on the formation and deformation history of the major Variscan shear zone in the Bavarian Forest.
Abstract: To place constraints on the formation and deformation history of the major Variscan shear zone in the Bavarian Forest, Bavarian Pfahl zone, SW Bohemian Massif, granitic dykes and their feldspar-phyric massive host rock (so-called “palite”), zircons were dated by the U–Pb isotope dilution and Pb-evaporation methods. The dated samples comprise two host rocks and four dykes from a K-rich calc-alkaline complex adjoining the SW part of the Bavarian Pfahl shear zone. The palites, which appear to be the oldest magmatic rocks emplaced in the shear zone, yield ages of 334±3, 334.5±1.1 Ma (average 207Pb/206Pb-evaporation zircon ages) and 327–342 Ma (range of U/Pb zircon ages) suggesting a Lower Carboniferous age for the initiation of the Pfahl zone. Absence of inherited older cores in all investigated zircons indicates that incorporation of crustal zircon material has played virtually no role or that the melting temperature was very high. Determination of the dyke emplacement age is complicated by partial Pb-loss in most of the fractions analysed. This Pb-loss can be ascribed to higher U content of the dyke zircons compared to those from host rock. Upper discordia intercept ages of the different dykes range from 322±5 to 331±9 Ma. The dykes are pre- to synkinematic with respect to penetrative regional mylonitisation along the Pfahl zone, and the upper intercept ages provide a maximum age for this tectonic event.

Journal ArticleDOI
TL;DR: In this article, a mathematical approach which has been originally developed in soil mechanics has been adapted to basin modelling and is used for the calibration of porosities in the 3D case study in the North Sea.
Abstract: Mudstones are one of the least permeable rocks in most sedimentary sequences. Accordingly they can act as seals for fluid flow leading to abnormal overpressures. Nevertheless, mudstone compaction and related permeability and porosity decrease are not adequately described in current basin modelling software, because only mechanical compaction is taken into account. In reality, however, clay minerals undergo severe chemical diagenesis which certainly influences petrophysical properties and compaction. In this context a mathematical approach which has been originally developed in soil mechanics has been adapted to basin modelling. The underlying mathematical equations are carefully explained in the text. In the basic equation the compression coefficient is a function of void ratio and effective stress. Using these equations, overpressure can be predicted by using petroleum systems modelling techniques. This is shown for a real 3D case study in the North Sea, in which strong overpressure occurs. A compaction model for mudstones that depends strongly on the clay content of the individual stratigraphic units is used for the calibration of porosities in the 3D case study. In addition, a chemical compaction model that reduces porosities by using a kinetic reaction is used for the deeper part of the basin where mechanical compaction processes are less important. The pressure generation process depends strongly on permeability and compressibility of the porous medium. Therefore, the use of mudstone compaction and permeability models is sufficient to produce pore overpressures. In the case studied, abnormal overpressures are generated during burial together with the petroleum generation process. The mechanical and chemical compaction mechanisms ensure that the pressures are preserved in the deeper part of the basin.

Journal ArticleDOI
TL;DR: In this paper, open-system non-isothermal pyrolysis up to 1,200°C in combination with elemental analysis was used to study the thermal liberation of molecular nitrogen (N2) from sedimentary rocks and kerogen concentrates of Palaeozoic age from the Central European Basin system and an Eocene shale (Liaohe Basin, China) with a high content of ammonium feldspar (buddingtonite).
Abstract: Open-system non-isothermal pyrolysis up to 1,200°C in combination with elemental analysis was used to study the thermal liberation of molecular nitrogen (N2) from sedimentary rocks and kerogen concentrates of Palaeozoic age from the Central European Basin system and an Eocene shale (Liaohe Basin, China) with a high content (36%) of ammonium feldspar (buddingtonite). The N/Corg (atomic) ratios of the kerogen concentrates ranged from 0.005 to 0.014, which represents the range commonly observed for coals. Bulk N/Corg ratios of the Palaeozoic shales extended from 0.035 to 0.108, indicating the presence of significant amounts of inorganic nitrogen. Namurian A and A-B (CnA; CnA-B) samples typically exhibited the earliest onset of N2 generation with intense, characteristic peaks around 600°C. N2 liberation from the buddingtonite-rich sample occurred at higher temperatures, with a broad peak around 700°C. Pyrograms of the kerogen concentrates showed no or strongly reduced N2 generation in the 500–700°C range. On-line isotope-specific analysis of the pyrolytically liberated N2 on one sample revealed a variability of ∼10‰ in the δ15N values and a steady increase in δ15N with temperature during the main phase of N2 generation.

Journal ArticleDOI
TL;DR: In this paper, the transition from Rotliegend to Zechstein within the Southern Permian Basin is one from continental desert to a marine environment and the lake sediments are characterised by high frequency cyclicity, shown by the sedimentary record and also by palaeontological data.
Abstract: The transition from Rotliegend to Zechstein within the Southern Permian Basin is one from continental desert to a marine environment. During the Upper Rotliegend II a huge playa lake existed there. This lake was temporarily influenced by precursors of the Zechstein transgression. Therefore the mega-playa evolved into a sabkha system. One of these early marine ingressions is known from an outcrop in Schleswig-Holstein. Laminated silt- and claystones, deposited within a standing water body, are intercalated in siltstones of a salt-flat environment. The lake sediments are characterised by high frequency cyclicity, shown by the sedimentary record and also by palaeontological data. The section contains fresh water as well as brackish-marine and marine fauna. Climatically forced cycles interact with marine incursions. After the Zechstein transgression had flooded the basin completely, sedimentation was controlled by sea-level fluctuations. Two sections, in the southern North Sea and in Schleswig-Holstein, are presented in this paper. Cyclicities with different frequencies controlled the sedimentation of the Kupferschiefer (T1) and the Werra Carbonate (Ca1). Sediments of the North Sea sequence were deposited within a shallow bay at the margin of an elevation. Therefore, the high frequency cyclicity became obvious within the sedimentary patterns and in the faunal content.

Journal ArticleDOI
TL;DR: In this article, a broad-scale kinematic deformation model across the Rhine Graben is provided on the basis of tectonics and velocity results of the GPS permanent stations.
Abstract: In order to study the ongoing tectonic deformation in the Rhine Graben area, we reconstruct the local crustal velocity and the strain rate field from GPS array solutions Following the aim of this work, we compile the velocities of permanent GPS stations belonging to various networks (EUREF, AGNES, REGAL and RGP) in central western Europe Moreover, the strain rate field is displayed in terms of principal axes and values, while the normal and the shear components of the strain tensor are calculated perpendicular and parallel to the strike of major faults The results are compared with the fault plane solutions of earthquakes, which have occurred in this area A broad-scale kinematic deformation model across the Rhine Graben is provided on the basis of tectonics and velocity results of the GPS permanent stations The area of study is divided into four rigid blocks, between which there might be relative motions The velocity and the strain rate fields are reconstructed along their borders, by estimating a uniform rotation for each block The tectonic behaviour is well represented by the four-block model in the Rhine Graben area, while a more detailed model will be needed for a better reconstruction of the strain field in the Alpine region

Journal ArticleDOI
TL;DR: Fluid inclusions have been studied in minerals infilling fissures (quartz, calcite, fluorite, anhydrite) hosted by Carboniferous and Permian strata from wells in the central and eastern part of the North German Basin this article.
Abstract: Fluid inclusions have been studied in minerals infilling fissures (quartz, calcite, fluorite, anhydrite) hosted by Carboniferous and Permian strata from wells in the central and eastern part of the North German Basin in order to decipher the fluid and gas migration related to basin tectonics. The microthermometric data and the results of laser Raman spectroscopy reveal compelling evidence for multiple events of fluid migration. The fluid systems evolved from a H2O–NaCl±KCl type during early stage of basin subsidence to a H2O–NaCl–CaCl2 type during further burial. Locally, fluid inclusions are enriched in K, Cs, Li, B, Rb and other cations indicating intensive fluid–rock interaction of the saline brines with Lower Permian volcanic rocks or sediments. Fluid migration through Carboniferous sediments was often accompanied by the migration of gases. Aqueous fluid inclusions in quartz from fissures in Carboniferous sedimentary rocks are commonly associated with co-genetically trapped CH4–CO2 inclusions. P–T conditions estimated, via isochore construction, yield pressure conditions between 620 and 1,650 bar and temperatures between 170 and 300°C during fluid entrapment. The migration of CH4-rich gases within the Carboniferous rocks can be related to the main stage of basin subsidence and stages of basin uplift. A different situation is recorded in fluid inclusions in fissure minerals hosted by Permian sandstones and carbonates: aqueous fluid inclusions in calcite, quartz, fluorite and anhydrite are always H2O–NaCl–CaCl2-rich and show homogenization temperatures between 120 and 180°C. Co-genetically trapped gas inclusions are generally less frequent. When present, they show variable N2–CH4 compositions but contain no CO2. P–T reconstructions indicate low-pressure conditions during fluid entrapment, always below 500 bar. The entrapment of N2–CH4 inclusions seems to be related to phases of tectonic uplift during the Upper Cretaceous. A potential source for nitrogen in the inclusions and reservoirs is Corg-rich Carboniferous shales with high nitrogen content. Intensive interaction of brines with Carboniferous or even older shales is proposed from fluid inclusion data (enrichment in Li, Ba, Pb, Zn, Mg) and sulfur isotopic compositions of abundant anhydrite from fissures. The mainly light δ34S values of the fissure anhydrites suggest that sulfate is either derived through oxidation and re-deposition of biogenic sulfur or through mixing of SO42−-rich formation waters with variable amounts of dissolved biogenic sulfide. An igneous source for nitrogen seems to be unlikely since these rocks have low total nitrogen content and, furthermore, even extremely altered volcanic rocks from the study area do not show a decrease in total nitrogen content.

Journal ArticleDOI
TL;DR: In this article, a genetic algorithm based on the theory of evolution was used to find the sources of the anomaly gravity field in a 3D context, which was confirmed by both a synthetic example and real data set from the island of Fuerteventura.
Abstract: The use of genetic algorithms in geophysical inverse problems is a relatively recent development and offers many advantages in dealing with the non-linearity inherent in such applications. We have implemented a genetic algorithm to efficiently invert a set of gravity data. Employing several fixed density contrasts, this algorithm determines the geometry of the sources of the anomaly gravity field in a 3-D context. The genetic algorithms, based on Darwin’s theory of evolution, seek the optimum solution from an initial population of models, working with a set of parameters by means of modifications in successive iterations or generations. This searching method traditionally consists of three operators (selection, crossover and mutation) acting on each generation, but we have added a further one, which smoothes the obtained models. In this way, we have designed an efficient inversion gravity method, confirmed by both a synthetic example and a real data set from the island of Fuerteventura. In the latter case, we identify crustal structures related to the origin and evolution of the island. The results show a clear correlation between the sources of gravity field in the model and the three volcanic complexes recognized in Fuerteventura by other geological studies.

Journal ArticleDOI
TL;DR: In this paper, the authors used 3D finite element techniques to simulate extension and lateral translation on a lithospheric scale in the Tertiary Upper Rhine Graben and found that the shape of the border faults, their frictional coefficients, and sedimentary loads have profound effects on the rate of ductile flow across the graben.
Abstract: The evolution and geometry of the Tertiary Upper Rhine Graben were controlled by a continually changing stress field and the reactivation of pre-existing crustal discontinuities. A period of WNW-ESE extension in the late Eocene and Oligocene was followed by lateral translation from the early Miocene onwards. This study utilizes 3D finite element techniques to simulate extension and lateral translation on a lithospheric scale. Brittle and creep behaviour of lithospheric rocks are represented by elastoplasticity and thermally activated power-law viscoplasticity, respectively. Contact elements allocated with cohesion and frictional coefficients are used to describe pre-existing zones of weakness in the elastic-brittle field. Our results suggest that (1) extension is accommodated along listric border faults to midcrustal depth of 15–16 km. Beneath, pure shear stretching occurs without a need for localized shear zones in lower crust and upper mantle. (2) Ductile flow at midcrustal depth across the graben accounts for the pronounced halfgraben morphology. Thereby, the shape of the border faults, their frictional coefficients, and sedimentary loads have profound effects on the rate of ductile flow across the graben. (3) Horizontal extension of 8–8.5 km and sinistral displacement across the rift of 3–4 km are needed to accommodate the observed sediment thickness.

Journal ArticleDOI
TL;DR: In this article, a combination of subcrop data (derived from exploration wells and reflection seismic lines) and palaeostress analysis provided new constraints on the timing and kinematics of interacting basement faults.
Abstract: The southern end of the Upper Rhine Graben (URG) is formed by a major continental transfer zone, which was localised by the reactivation of ENE-oriented basement faults of Late Palaeozoic origin. A combination of subcrop data (derived from exploration wells and reflection seismic lines) and palaeostress analysis provided new constraints on the timing and kinematics of interacting basement faults. Rifting in the southern URG began in the Upper Priabonian under regional WNW–ESE-directed extension, oriented roughly perpendicular to the graben axis. In the study area, this led to the formation of NNE-trending half-grabens. Simultaneously, ENE-trending basement faults, situated in the area of the future Rhine-Bresse Transfer Zone (RBTZ), were reactivated in a sinistrally transtensive mode. In the sedimentary cover the strike-slip component was accommodated by the development of en-echelon aligned extensional flexures. Flexuring and interference between the differently oriented basement faults imposed additional, but locally confined extension in the sedimentary cover, which deviated by as much as 90° from the regional WNW–ESE extension. The interference of regional and local stresses led to a regime approaching radial extension at the intersection between the URG and RBTZ.

Journal ArticleDOI
TL;DR: In this paper, high-precision U-Pb ages and initial Hf isotopic compositions of zircon from conformable volcanic and crosscutting intrusive rocks within submarine volcanosedimentary strata of the Western Peruvian Trough (WPT) hosting the Perubar massive sulfide deposit were obtained.
Abstract: During late Early to Late Cretaceous, the Peruvian coastal margin underwent fast and oblique subduction and was characterized by important arc plutonism (the Peruvian Coastal Batholith) and formation of volcanosedimentary basins known as the Western Peruvian Trough (WPT). We present high-precision U–Pb ages and initial Hf isotopic compositions of zircon from conformable volcanic and crosscutting intrusive rocks within submarine volcanosedimentary strata of the WPT hosting the Perubar massive sulfide deposit. Zircons extracted from both the volcanic and intrusive rocks yield concordant U–Pb ages ranging from 67.89±0.18 Ma to 69.71±0.18 Ma, indicating that basin subsidence, submarine volcanism and plutonic activity occurred in close spatial and temporal relationship within the Andean magmatic arc during the Late Cretaceous. Field observations, satellite image interpretation, and plate reconstructions, suggest that dextral wrenching movements along crustal lineaments were related to oblique subduction. Wrench tectonics is therefore considered to be the trigger for the formation of the WPT as a series of pull-apart basins and for the emplacement of the Coastal Batholith. The zircon initial eHf values of the dated magmatic rocks fall between 5.5 and 7.4, and indicate only very subordinate influence of a sedimentary or continental component. The absence of inherited cores in the zircons suggest a complete lack of old basement below the WPT, in agreement with previous U–Pb and Sr isotopic data for batholithic rocks emplaced in the WPT area. This is supported by the presence of a most likely continuous block of dense (~3.0 g/cm3) material observed beneath the WPT area on gravimetric crustal cross sections. We suggest that this gravimetric anomaly may correspond to a piece of lithospheric mantle and/or oceanic crust inherited from a possible Late Permian–Triassic rifting. Such young and mafic crust was the most probable source for arc magmatism in the WPT area.

Journal ArticleDOI
TL;DR: A large-scale transfer zone subdivides the northern parts of the Upper Rhine Graben into a northern and a southern sub-basin this paper, which display the geometry of asymmetric half-grabens with opposing tilt directions.
Abstract: A large-scale transfer zone subdivides the northern parts of the Upper Rhine Graben into a northern and a southern sub-basin. These sub-basins display the geometry of asymmetric half-grabens with opposing tilt directions. The transfer zone connects the western master fault of the northern half-graben with the eastern master fault of the southern half-graben. In the northern Upper Rhine Graben early syn-rift sedimentation (Late Priabonian to Late Rupelian) was controlled by the tectonically induced subsidence of these half-grabens (autogenetic), as well as by regional third-order sea level variations (allogenetic). Within the graben, lateral changes in subsidence rates (in dip and strike direction of fault blocks) controlled the development of accommodation space and thus, sediment thickness and facies. Furthermore, a low-displacement segment along the western border fault acted as a sediment entry point. Tectonics controlled the distribution of early syn-rift deposits and the palaeogeography of the northern Upper Rhine Graben.

Journal ArticleDOI
TL;DR: The recent evolution of the north German Basin (NGB), which is presently a low-seismic area, was partly affected by glacial loading and unloading of the ice masses as mentioned in this paper.
Abstract: The recent evolution of the north German Basin (NGB), which is presently a low-seismic area, was partly affected by glacial loading and unloading of the ice masses. Major stresses acting within the NGB are induced by the North-Atlantic ridge push, the ongoing Alpine collision, and the post-glacial rebound of Fennoscandia. Present-day horizontal stresses within the NGB are directed generally NW–SE, but fan and bend north of 52°N towards NNE. Major basement faults are directed NW–SE, minor faults NE–SW and NNE–SSW, and are clearly detectable in geomorphological and satellite lineaments. Furthermore, the drainage pattern and the distribution of lakes in northern Germany follow exactly block boundaries and, hence, mark zones of present-day subsidence. The understanding of the post-glacial morphology and reactivation of faults requires a view into the very heterogeneous crust and upper mantle below the NGB. The re-adjustment of the individual fault blocks during post-glacial relaxation of the lithosphere leads to differential, crust-dependent uplift and, probably, to the formation of Urstrom valleys. The Urstrom valleys and terminal moraines in northern Germany appear to parallel the major tectonic lineaments and lithospheric “block” boundaries. The lithospheric memory is expressed in the post-glacial landscape evolution of the NGB.

Journal ArticleDOI
TL;DR: In this paper, a conceptual landscape evolution model of the "Lluta collapse" was developed and the authors analyzed the controls of mass wasting and erosion/sediment transport in channels on the topographic development.
Abstract: The ‘Lluta collapse’ of northern Chile is one of the oldest recognizable landslides (>2.5 Ma) in a hyperarid continental setting. This paper develops a conceptual landscape evolution model of the ‘Lluta collapse’ and analyzes the controls of mass wasting and erosion/sediment transport in channels on the topographic development. The data presented here imply that high relief along a topographic scarp, surface fracturing, elevated groundwater table during a more humid climate and an aquitard underlying permeable ignimbrites are preparatory causal factors for landsliding >2.5 Ma ago. A strong seismic event then possibly resulted in the displacement of ca. 26 km3 of mass. Subsequent modification of the landslide scar occurred by backward erosion, resulting in the establishment of a dendritic drainage network and the removal of an additional ca. 24 km3 of material. It appears that this mass was produced by mass wasting in the headwaters, and exported by high-concentrated debris flows in channels. In addition, morphometric information suggest that whereas the geometrical development of the ‘Lluta collapse’ has been controlled by gravitational mass wasting, the rates of the development of this geomorphic unit have been limited by the export rates of mass and hence by the transport capacity of the flows.

Journal ArticleDOI
TL;DR: A 3D geological model of the area east of Basel on the southeastern border of the Upper Rhine Graben, consisting of 47 faults and six stratigraphic horizons relevant for groundwater flow, was developed using borehole data, geological maps, geological cross sections, and outcrop data as mentioned in this paper.
Abstract: A 3D geological model of the area east of Basel on the southeastern border of the Upper Rhine Graben, consisting of 47 faults and six stratigraphic horizons relevant for groundwater flow, was developed using borehole data, geological maps, geological cross sections, and outcrop data. This model provides new insight into the discussions about the kinematics of the area between the southeastern border of the Upper Rhine Graben and the Tabular Jura east of Basel. A 3D analysis showed that both thin-skinned and thick-skinned tectonic elements occur in the modeled area and that the Anticline and a series of narrow graben structures developed simultaneously during an extensional stress-field varying from E–W to SSE–NNW, which lasted from the Middle Eocene to Late Oligocene. In a new approach the faults and horizons of the 3D geological model were transferred into discrete elements with distributed hydrogeological properties in order to simulate the 3D groundwater flow regime within the modeled aquifers. A three-layer approach with a horizontal regularly spaced grid combined with an irregular property distribution of transmissivity in depth permitted the piezometric head of the steady-state model to be automatically calibrated to corresponding measurements using more than 200 piezometers. Groundwater modeling results demonstrated that large-scale industrial pumping affected the groundwater flow field in the Upper Muschelkalk aquifer at distances of up to 2 km to the south. The results of this research will act as the basis for further model developments, including salt dissolution and solute transport in the area, and may ultimately help to provide predictions for widespread land subsidence risks.