scispace - formally typeset
Search or ask a question

Showing papers in "Isa Transactions in 2019"


Journal ArticleDOI
TL;DR: The results of this study suggest that the proposed intelligent fault diagnosis method for rotating machinery offers a new and promising approach, and significantly improves the information flow throughout the network, which is well suited for processing machinery vibration signal with variable sequential length.
Abstract: Effective fault diagnosis of rotating machinery has always been an important issue in real industries. In the recent years, data-driven fault diagnosis methods such as neural networks have been receiving increasing attention due to their great merits of high diagnosis accuracy and easy implementation. However, it is mostly difficult to fully train a deep neural network since gradients in optimization may vanish or explode during back-propagation, which results in deterioration and noticeable variance in model performance. In fault diagnosis researches, larger data sequence of machinery vibration signal containing sufficient information is usually preferred and consequently, deep models with large capacity are generally adopted. In order to improve network training, a residual learning algorithm is proposed in this paper. The proposed architecture significantly improves the information flow throughout the network, which is well suited for processing machinery vibration signal with variable sequential length. Little prior expertise on fault diagnosis and signal processing is required, that facilitates industrial applications of the proposed method. Experiments on a popular rolling bearing dataset are implemented to validate the proposed method. The results of this study suggest that the proposed intelligent fault diagnosis method for rotating machinery offers a new and promising approach.

239 citations


Journal ArticleDOI
TL;DR: The proposed IPAVMD outperforms the traditional parameter-adaptive VMD and further expands the application to compound-fault diagnosis and improves the optimization objective function of grasshopper optimization algorithm based on the ensemble kurtosis.
Abstract: Parameter-adaptive variational mode decomposition (VMD) has attenuated the dominant effect of prior parameters, especially the predefined mode number and balancing parameter, which heavily trouble the traditional VMD. However, parameter-adaptive VMD still encounters some problems when it is applied to the data from industry applications. On one hand, the mode number chosen using parameter-adaptive VMD is not the optimal. Numbers of redundant modes are decomposed. On another hand, parameter-adaptive VMD has much space for the improvement when it is applied to compound-fault diagnosis. To solve these issues and further enhance its performance, an improved parameter-adaptive VMD (IPAVMD) is proposed in this paper. Firstly, a new index, called ensemble kurtosis, is constructed by combining with kurtosis and the envelope spectrum kurtosis. It can simultaneously take the cyclostationary and impulsiveness into consideration. Secondly, the optimization objective function of grasshopper optimization algorithm is improved based on the ensemble kurtosis. The improved method chooses the mean value of the ensemble kurtosis of all modes rather than that of the individual mode as objective function. Thirdly, to extract all potential fault information, an iteration algorithm is used in the new method. Benefiting from these improvements, the proposed IPAVMD outperforms the traditional parameter-adaptive VMD and further expands the application to compound-fault diagnosis. It has been verified by a series of simulated signals and a real dataset from the axle box bearings of locomotive.

162 citations


Journal ArticleDOI
TL;DR: An adaptive chattering-free sliding mode controller for trajectory tracking of robotic manipulators in the presence of external disturbances and inertia uncertainties is presented and simulation results validate the effectiveness of the proposed control scheme.
Abstract: This paper presents an adaptive chattering-free sliding mode controller for trajectory tracking of robotic manipulators in the presence of external disturbances and inertia uncertainties. To achieve fast convergence and desirable tracking precision, a second-order fast nonsingular terminal sliding mode (SOFNTSM) controller is designed to guarantee system performance and robust stability. Chattering is eliminated using continuous control law due to high-frequency switching terms contained in the first derivative of actual control signals. Meanwhile, uncertainties are compensated by introducing the adaptive technique, whose prior knowledge about upper bound is not required. Finally, simulation results validate the effectiveness of the proposed control scheme.

116 citations


Journal ArticleDOI
TL;DR: A novel adaptive super-twisting fractional-order nonsingular terminal sliding mode (AST-FONTSM) control scheme using time delay estimation (TDE) for the cable-driven manipulators and strong robustness can be simultaneously ensured in the sliding mode phase.
Abstract: This paper proposes a novel adaptive super-twisting fractional-order nonsingular terminal sliding mode (AST-FONTSM) control scheme using time delay estimation (TDE) for the cable-driven manipulators. The designed control scheme utilizes TDE to obtain the estimation of system dynamics, and therefore no system dynamic model information will be required. Afterwards, AST and FONTSM schemes are applied to ensure good control performance in both reaching and sliding mode phases. Due to the adoption of AST scheme, good robustness and high control precision are obtained in the reaching phase, while the boundary information of the lumped uncertainties will be no longer required. Thanks to the utilization of FONTSM error dynamics, fast convergence and accurate tracking and strong robustness can be simultaneously ensured in the sliding mode phase. Corresponding comparative simulation and experimental results demonstrate the effectiveness and superiorities of our proposed method over the existing control methods.

110 citations


Journal ArticleDOI
TL;DR: A transfer learning framework based on pre-trained convolutional neural network, which leverages the knowledge learned from the training data to facilitate diagnosing a new but similar task, is presented in this work.
Abstract: Recent years have witnessed increasing popularity and development of deep learning spanning through various fields. Deep networks, and in particular convolutional neural network (CNN) have also achieved many state-of-the-art competition results in the intelligent fault diagnosis of mechanical systems. However, most of the existing studies have been performed with the assumption that the same distribution holds for both the training data and the test data, which is not in accord with situations in real diagnosis tasks. To tackle this problem, a transfer learning framework based on pre-trained CNN, which leverages the knowledge learned from the training data to facilitate diagnosing a new but similar task, is presented in this work. First, the CNN is trained on large datasets to learn the hierarchical features from the raw data. Then, the architecture and weights of the pre-trained CNN are transferred to new tasks with proper fine-tuning instead of training a network from scratch. To adapt the pre-trained CNN in a specific case, three transfer learning strategies are discussed and compared to investigate the applicability as well as the significance of feature transferability from the different levels of a deep structure. The case studies show that the proposed framework can transfer the features of the pre-trained CNN to boost the diagnosis performance on unseen machine conditions in terms of diverse working conditions and fault types.

109 citations


Journal ArticleDOI
TL;DR: Comparisons illustrate the superiority of SP over kurtosis for selecting the sensitive mode from the resulted signal of CCEEMEDAN and over two other popular signal-processing methods, variational mode decomposition and fast kurtogram.
Abstract: A novel time–frequency analysis method called complementary complete ensemble empirical mode decomposition (EEMD) with adaptive noise (CCEEMDAN) is proposed to analyze nonstationary vibration signals. CCEEMDAN combines the advantages of improved EEMD with adaptive noise and complementary EEMD, and it improves decomposition performance by reducing reconstruction error and mitigating the effect of mode mixing. However, because white noise mixed in with the raw vibration signal covers the whole frequency bandwidth, each mode inevitably contains some mode noise, which can easily inundate the fault-related information. This paper proposes a time–frequency analysis method based on CCEEMDAN and minimum entropy deconvolution (MED) for fault detection of rolling element bearings. First, a raw signal is decomposed into a series of intrinsic mode functions (IMFs) by using the CCEEMDAN method. Then a sensitive parameter (SP) based on adjusted kurtosis and Pearson’s correlation coefficient is applied to select a sensitive mode that contains the most fault-related information. Finally, the MED is applied to enhance the fault-related impulses in the selected IMF. The fault signals of high-speed train axle-box bearing are applied to verify the effectiveness of the proposed method. Results show that the proposed method can effectively reveal axle-bearing defects’ fault information. The comparisons illustrate the superiority of SP over kurtosis for selecting the sensitive mode from the resulted signal of CCEEMEDAN. Further, we conducted comparisons that highlight the superiority of our proposed method over individual CCEEMDAN and MED methods and over two other popular signal-processing methods, variational mode decomposition and fast kurtogram.

102 citations


Journal ArticleDOI
He Rui1, Guoming Chen1, Che Dong1, Shufeng Sun1, Shen Xiaoyu1 
TL;DR: A data-driven digital twin system for automatic process applications is presented by integrating virtual modeling, process monitoring, diagnosis, and optimized control into a cooperative architecture to guarantee stable and safe control performance under apparatus faults.
Abstract: Due to the installation of various apparatus in process industries, both factors of complex structures and severe operating conditions could result in higher accident frequencies and maintenance challenges. Given the importance of security in process systems, this paper presents a data-driven digital twin system for automatic process applications by integrating virtual modeling, process monitoring, diagnosis, and optimized control into a cooperative architecture. For unknown model parameters, the adaptive system identification is proposed to model closed-loop virtual systems and residual signals with fault-free case data. Performance indices are improved to make the design of robust monitoring and diagnosis system to identify the apparatus status. Soft-sensor, parameterization control, and model-matching reconfiguration are ameliorated and incorporated into the optimized control configuration to guarantee stable and safe control performance under apparatus faults. The effectiveness and performance of the proposed digital twin system are evaluated by using different simulations on the Tennessee Eastman benchmark process in the presence of realistic fault scenarios.

99 citations


Journal ArticleDOI
TL;DR: Using the compounded control scheme, trajectory tracking errors can be stabilized rapidly and the proposed HFTC scheme has remarkably superior performance.
Abstract: In this paper, accurate trajectory tracking control problem of a quadrotor with unknown dynamics and disturbances is addressed by devising a hybrid finite-time control (HFTC) approach. An adaptive integral sliding mode (AISM) control law is proposed for altitude subsystem of the quadrotor, whereby underactuated characteristics can decoupled. Backstepping technique is further deployed to control the horizontal position subsystem. To exactly attenuate external disturbances, a finite-time disturbance observer (FDO) combining with nonsingular terminal sliding mode (NTSM) control strategy is constructed for attitude subsystem, and thereby achieve finite-time stability. Using the compounded control scheme, trajectory tracking errors can be stabilized rapidly. Simulation results and comprehensive comparisons show that the proposed HFTC scheme has remarkably superior performance.

98 citations


Journal ArticleDOI
TL;DR: Improved PSO combined with a variety of search strategies are achieved and compared with other current optimization algorithms and would be beneficial for intelligent execution of nuclear power plant operation.
Abstract: The safety and public health during nuclear power plant operation can be enhanced by accurately recognizing and diagnosing potential problems when a malfunction occurs. However, there are still obvious technological gaps in fault diagnosis applications, mainly because adopting a single fault diagnosis method may reduce fault diagnosis accuracy. In addition, some of the proposed solutions rely heavily on fault examples, which cannot fully cover future possible fault modes in nuclear plant operation. This paper presents the results of a research in hybrid fault diagnosis techniques that utilizes support vector machine (SVM) and improved particle swarm optimization (PSO) to perform further diagnosis on the basis of qualitative reasoning by knowledge-based preliminary diagnosis and sample data provided by an on-line simulation model. Further, SVM has relatively good classification ability with small samples compared to other machine learning methodologies. However, there are some challenges in the selection of hyper-parameters in SVM that warrants the adoption of intelligent optimization algorithms. Hence, the major contribution of this paper is to propose a hybrid fault diagnosis method with a comprehensive and reasonable design. Also, improved PSO combined with a variety of search strategies are achieved and compared with other current optimization algorithms. Simulation tests are used to verify the accuracy and interpretability of research findings presented in this paper, which would be beneficial for intelligent execution of nuclear power plant operation.

97 citations


Journal ArticleDOI
TL;DR: A novel fixed-time output feedback control scheme for trajectory tracking of marine surface vessels (MSVs) subject to unknown external disturbances and uncertainties and the convergence time of the controller and the FESO is independent of initial state values.
Abstract: This paper proposes a novel fixed-time output feedback control scheme for trajectory tracking of marine surface vessels (MSVs) subject to unknown external disturbances and uncertainties. A fixed-time extended state observer (FESO) is proposed to estimate unknown lumped disturbances and unmeasured velocities, and the observation errors will converge to zero in fixed time. Based on the estimated values, a novel fixed-time trajectory tracking controller is designed for an MSV to track a time-varying reference trajectory by the extension of an adding a power integrator (API), and the tracking errors can converge to zero in fixed time as well. Additionally, the convergence time of the controller and the FESO is independent of initial state values. Finally, simulation results and comparisons illustrate the superiority of the proposed control scheme.

94 citations


Journal ArticleDOI
TL;DR: The obtained results confirmed the accuracy and reliability of the proposed approach in designing LFC for multi-interconnected power systems.
Abstract: This paper proposes optimal load frequency control (LFC) designed by Adaptive Neuro Fuzzy Inference System (ANFIS) trained via antlion optimizer (ALO) for multi-interconnected system comprising renewable energy sources (RESs). Two systems are modeled and investigated; the first one has two plants of grid connected photovoltaic (PV) system with maximum power point tracker (MPPT) and thermal plant while the second comprises four plants of thermal, wind turbine and grid connected PV systems. ALO is employed to get the optimal gains of Proportional-Integral (PI) controller such that the integral time absolute error (ITAE) of frequency and tie line power deviations is minimized. The input and output of the optimized PI controller are used to train the ANFIS-LFC with Gaussian surface membership functions. Different load disturbances are studied and the results are compared with other reported approaches. The obtained results confirmed the accuracy and reliability of the proposed approach in designing LFC for multi-interconnected power systems.

Journal ArticleDOI
TL;DR: This study proposes an adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators to ensure the transient and steady-state performances of the trajectory tracking control.
Abstract: This study proposes an adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. A transformation with respect to tracking error using certain performance functions is used to ensure the transient and steady-state performances of the trajectory tracking control for robotic manipulators. Using the transformed error, a nonsingular terminal sliding mode surface is proposed. A continuous terminal sliding mode control (SMC) is presented to stabilize the system. To compensate for the uncertainty and external disturbance, a novel sliding mode disturbance observer is proposed. Considering the unknown boundary of the derivative of a lumped disturbance, an adaptive law based on the idea of equivalent control is designed. Combining the adaptive law, continuous nonsingular terminal SMC, and sliding mode disturbance observer, the adaptive sliding mode disturbance rejection control with prescribed performance is developed. Simulations are carried out to demonstrate the effectiveness of the proposed approach.

Journal ArticleDOI
Yongting Deng1, Jianli Wang1, Hongwen Li1, Jing Liu1, Dapeng Tian1 
TL;DR: Experiments results demonstrate that the proposed control strategy can guarantee strong anti-disturbance capability of the PMSM drive system with improved current and speed-tracking performance.
Abstract: This paper focuses on the current control of a permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and external disturbances. To improve the performance of the PMSM current loop in terms of the speed of response, tracking accuracy, and robustness, a hybrid control strategy is proposed by combining the adaptive sliding mode control and sliding mode disturbance observer (SMDO). An adaptive law is introduced in the sliding mode current controller to improve the dynamic response speed of the current loop and robustness of the PMSM drive system to the existing parameter variations. The SMDO is used as a compensator to restrain the external disturbances and reduce the sliding mode control gains. Experiments results demonstrate that the proposed control strategy can guarantee strong anti-disturbance capability of the PMSM drive system with improved current and speed-tracking performance.

Journal ArticleDOI
TL;DR: A backstepping control scheme based on fixed-time disturbance observer for flexible air-breathing hypersonic vehicles and the closed-loop system is proven to be semi-globally uniformly ultimately fixed- time bounded via Lyapunov analysis.
Abstract: This paper proposes a fixed-time backstepping control scheme based on fixed-time disturbance observer for flexible air-breathing hypersonic vehicles. The backstepping control is combined with the fixed-time control technique to achieve fixed-time convergence. A fixed-time super-twisting disturbance observer, which is convergent independently of initial conditions, is employed to estimate and compensate the uncertainties and flexible effects in tracking process. A nonlinear first-order filter is adopted to avoid the "explosion of complexity" problem that arises in traditional backstepping, and to guarantee overall fixed-time stability. The closed-loop system is proven to be semi-globally uniformly ultimately fixed-time bounded via Lyapunov analysis. Simulation results are given to demonstrate the effectiveness of the proposed scheme.

Journal ArticleDOI
TL;DR: The main feature of this work stems from the use of multiply advanced techniques or methodologies that enables the finite-time stability of the closed-loop attitude control system and the designed control scheme is continuous with the property of chattering restraining.
Abstract: This work addresses the challenging problem of finite-time fault tolerant attitude stabilization control for the rigid spacecraft attitude control system without the angular velocity measurements, in the presence of external disturbances and actuator failures. Consider the severe circumstances with above failures and uncertainties, a novel continuous finite-time Extended State Observer is first established to observe the attitude angular velocity and the synthetic failure simultaneously. Unlike the existing observers, the finite-time methodology and Extended State Observer are utilized, to achieve the finite-time uniformly ultimately bounded stability of the attitude angular velocity and extended state observation errors. Furthermore, a novel continuous finite-time attitude controller is developed by using the nonsingular terminal sliding mode control and super-twisting method. The main feature of this work stems from our use of multiply advanced techniques or methodologies that enables the finite-time stability of the closed-loop attitude control system and the designed control scheme is continuous with the property of chattering restraining. Finally, numerical simulation results are presented to illustrate the effectiveness and fine performances of the finite-time observer and controller for the attitude control system.

Journal ArticleDOI
Mien Van1
TL;DR: A new control methodology is developed to enhance the tracking performance of fully actuated surface vessels based on an integrating between an adaptive integral sliding mode control and a disturbance observer and a new disturbance observer based on sliding mode technique.
Abstract: In this paper, a new control methodology is developed to enhance the tracking performance of fully actuated surface vessels based on an integrating between an adaptive integral sliding mode control (AISMC) and a disturbance observer (DO). First, an integral sliding mode control (ISMC), in which the backstepping control technique is used as the nominal controller, is designed for the system. The major features, i.e., benefits and drawbacks, of the ISMC are discussed thoroughly. Then, to enhance the tracking performance of the system, an adaptive technique and a new disturbance observer based on sliding mode technique are developed and integrated into the ISMC. The stability of the closed-loop system is proved based on Lyapunov criteria. Computer simulation is performed to illustrate the tracking performance of the proposed controller and compare with the existing controllers for the tracking control of a surface vessel. The simulation results demonstrate the superior performance of the proposed strategy.

Journal ArticleDOI
TL;DR: A fault diagnosis scheme combined of hierarchical symbolic analysis (HSA) and convolutional neural network (CNN) is proposed, which achieves laborsaving and timesaving preliminary feature extraction and accomplishes automatically feature learning with simplified network architecture.
Abstract: Fault diagnosis of rotating machinery is crucial to improve safety, enhance reliability and reduce maintenance cost. The manual feature extraction and selection of traditional fault diagnosis methods depend on signal processing skills and expert experience, which is labor-intensive and time-consuming. As a typical intelligent fault diagnosis method, the convolutional neural network automatically learns features from original data, but it is extremely difficult to design and train a deep network architecture. This paper proposes a fault diagnosis scheme combined of hierarchical symbolic analysis (HSA) and convolutional neural network (CNN), which achieves laborsaving and timesaving preliminary feature extraction and accomplishes automatically feature learning with simplified network architecture. Firstly, hierarchical symbolic analysis is employed to extract features from original signals. The extracted features are able to identify different health conditions under various operating conditions. Then, convolutional neural network instead of human labor is used to learn the complex non-linear relationship between features and health conditions automatically. The architecture of CNN diagnosis model is simple and convenient to implement. Finally, a centrifugal pump dataset and a motor bearing dataset are adopted to validate the effectiveness of the proposed method. The diagnosis results show that the proposed method exhibits superior performance compared with shallow methods and deep learning methods.

Journal ArticleDOI
TL;DR: The adaptive control law is developed to stabilize both of the vertical and pitch motions of vehicle body using backstepping technique and Lyapunov stability theory, and further to track the predefined reference trajectories within a finite time, which not only ensure the safety performance requirements, but also achieve improvements in riding comfort and handling stability of vehicle active suspension system.
Abstract: This paper proposes a novel constraint adaptive backstepping based tracking controller for nonlinear active suspension system with parameter uncertainties and safety constraints. By introducing the virtual control input and reference trajectories, the adaptive control law is developed to stabilize both of the vertical and pitch motions of vehicle body using backstepping technique and Lyapunov stability theory, and further to track the predefined reference trajectories within a finite time, which not only ensure the safety performance requirements, but also achieve improvements in riding comfort and handling stability of vehicle active suspension system. Next, the stability analysis on zero dynamics error system is conducted to ensure that all the safety performance indicators are all bounded and the corresponding upper bounds are estimable. Finally, a numerical simulation is provided to verify the effectiveness of the proposed controller and to address the comparability between the classical Barrier-Lyapunov Function based adaptive tracking controller and the proposed controller.

Journal ArticleDOI
TL;DR: The study of experimental bearing fault signal shows that the PSO based deconvolution methods delivered better performance for rolling element bearing fault detection than the traditional deconVolution methods.
Abstract: Extraction of the fault related impulses from the raw vibration signal is important for rolling element bearing fault diagnosis. Deconvolution techniques, such as minimum entropy deconvolution (MED), MED adjusted (MEDA) and maximum correlated kurtosis deconvolution (MCKD), optimal MED adjusted (OMEDA) and multipoint optimal MED adjusted (MOMEDA), are typical techniques for enhancing the impulse-like component in the fault signal. This paper introduces the particle swarm optimization (PSO) algorithm to solve the filter of deconvolution problem. The proposed approaches solve the filter coefficients of the deconvolution problems by the PSO algorithm, assisted by a generalized spherical coordinate transformation. Compared with MED, MEDA, and OMEDA, the proposed PSO-MED and PSO-OMEDA can effectively overcome the influence of large random impulses and tend to deconvolve a series of periodic impulses rather than a signal impulse. Compared with MCKD and MOMEDA, the proposed PSO-MCKD and PSO-MOMEDA can achieve good performances even when the fault period is inaccurate. The effectiveness of the proposed methods is validated by the simulated signals. The study of experimental bearing fault signal shows that the PSO based deconvolution methods delivered better performance for rolling element bearing fault detection than the traditional deconvolution methods. Additionally, the proposed methods are compared with the following two popular signal processing methods: the ensemble empirical mode decomposition (EEMD) and fast kurtogram, which are used to highlight the improved performance of the proposed methods.

Journal ArticleDOI
Wang Shuhui1, Jiawei Xiang1, Hesheng Tang1, Xiaoyang Liu1, Yongteng Zhong1 
TL;DR: A simulation-determined band pass filter is employed to improve the performance of minimum entropy deconvolution (MED) for the fault diagnosis of axial piston pump bearings and the MED technique is applied to enhance weak fault-excited impulses by means of kurtosis maximization.
Abstract: The fault diagnosis of axial piston pumps is of significance for enhancing the reliability and security of hydraulic systems. Most of the faults occurring in the mechanical components of piston pumps are exhibited as fault-excited impulses. However, the strong impact-induced natural periodic impulses under the common working conditions (i.e. reciprocating motion of pistons) inevitably cause interference that considerably affects the fault detection performance. In this study, a simulation-determined band pass filter is employed to improve the performance of minimum entropy deconvolution (MED) for the fault diagnosis of axial piston pump bearings. First, a finite element method (FEM) simulation is performed to determine the possible carrier frequency. Second, the carrier frequency is used as the center frequency in association with a fixed bandwidth to determine the band pass filter parameters. Finally, the MED technique is applied to enhance weak fault-excited impulses by means of kurtosis maximization. Thereafter, envelope spectrum analysis is applied to the enhanced signals to obtain faulty feature frequencies. Two case studies are conducted, using bearings with faults in the outer and inner races of an axial piston pumps under common working conditions. The case studies confirm the necessity and effectiveness of the proposed method for detecting bearings faults in axial piston pumps.

Journal ArticleDOI
TL;DR: The scheme proposed utilizes an error-driven proportional-integral-derivative (PID) controller to guarantee better power quality performance in terms of voltage enhancement and stabilization of the buses, energy efficient utilization, and harmonic distortion reduction in a distribution network.
Abstract: This paper presents a novel contribution of a low complexity control scheme for voltage control of a dynamic voltage restorer (DVR). The scheme proposed utilizes an error-driven proportional-integral-derivative (PID) controller to guarantee better power quality performance in terms of voltage enhancement and stabilization of the buses, energy efficient utilization, and harmonic distortion reduction in a distribution network. This method maintains the load voltage close to or equal to the nominal value in terms of various voltage disturbances such as balanced and unbalanced sag/swell, voltage imbalance, notching, different fault conditions as well as power system harmonic distortion. A grasshopper optimization algorithm (GOA) is used to tune the gain values of the PID controller. In order to validate the effectiveness of the proposed DVR controller, first, a fractional order PID controller was presented and compared with the proposed one. Further, a comparative performance evaluation of four optimization techniques, namely Cuckoo search (CSA), GOA, Flower pollination (FBA), and Grey wolf optimizer (GWO), is presented to compare between the PID and FOPID performance in terms of fault conditions in order to achieve a global minimum error and fast dynamic response of the proposed controller. Second, a comparative analysis of simulation results obtained using the proposed controller and those obtained using an active disturbance rejection controller (ADRC) is presented, and it was found that the performance of the optimal PID is better than the performance of the conventional ADRC. Finally, the effectiveness of the presented DVR with the controller proposed has been assessed by time-domain simulations in the MATLAB/Simulink platform.

Journal ArticleDOI
Jian Han1, Xiuhua Liu1, Xinjiang Wei1, Xin Hu1, Huifeng Zhang1 
TL;DR: This paper addresses the problems of fault estimation and fault-tolerant control for a class of switched stochastic systems with sensor and actuator faults with a reduced-order fault estimation observer designed to estimate the system states, actuator and sensor faults, simultaneously.
Abstract: This paper addresses the problems of fault estimation and fault-tolerant control for a class of switched stochastic systems with sensor and actuator faults. A reduced-order fault estimation observer is designed to estimate the system states, actuator and sensor faults, simultaneously. In the observer design process, intermediate variables are introduced such that the differential information of the measurement output is not included in the designed observer. Compared with the existing results, the dimension of the proposed observer is reduced, and the sensor fault can be completely unknown and unbounded. An observer based fault-tolerant controller is designed to stabilize the switched stochastic systems. Under arbitrary switching signal, the designed observer and controller can ensure that both the estimation error system and the closed-loop system are mean-square exponentially stable with disturbance attenuation performance. At last, both a numerical example and a switched electrical circuit example verify the proposed method.

Journal ArticleDOI
TL;DR: Compared with the existing methods, the developed scheme can reduce the number of tuning parameters, and guarantee the tracking errors bounded within the prescribed performance constraints in the transformed coordinate, which means the steady errors, convergence rates and maximum overshoots can be guaranteed by the performance function.
Abstract: In this paper, we address the problem of trajectory tracking control of underactuated surface vessels in a quantitative method with only position and attitude available. Combined with high-gain observer, parameter compression algorithm and performance function, an adaptive control scheme with prescribed performance is proposed. The high-gain observer is constructed to estimate the velocities, and the parameter compression algorithm is adopted to address persistent perturbations and model uncertainties in a more concise way. By prescribed performance function, the controller can be designed with prescribed performance. The results about system stability is given and proved by using the Lyapunov direct method. The signals concerning with all the errors converge to a bounded set. Compared with the existing methods, the developed scheme can reduce the number of tuning parameters, and guarantee the tracking errors bounded within the prescribed performance constraints in the transformed coordinate, which means the steady errors, convergence rates and maximum overshoots can be guaranteed by the performance function. Comparison and numerical simulations are given to demonstrate the effectiveness of the proposed scheme.

Journal ArticleDOI
TL;DR: A multi-objective iterative optimization algorithm (MOIOA) for multi-fault diagnosis is proposed and results indicate that MOIOA is efficient to extract weak fault features even with heavy noise and harmonic interferences.
Abstract: Rolling element bearings (REBs) play an essential role in modern machinery and their condition monitoring is significant in predictive maintenance. Due to the harsh operating conditions, multi-fault may co-exist in one bearing and vibration signal always exhibits low signal-to-noise ratio (SNR), which causes difficulties in detecting fault. In the previous studies, maximum correlated kurtosis deconvolution (MCKD) has been validated as an efficient method to extract fault feature in the fault signals. Nonetheless, there are still some challenges when MCKD is applied to fault detection owing to the rigorous requirements of multiple input parameters. To overcome limitation, a multi-objective iterative optimization algorithm (MOIOA) for multi-fault diagnosis is proposed. In this method, correlated kurtosis (CK) is taken as a criterion to select optimal Morlet wavelet filter using the whale optimization algorithm (WOA). Meanwhile, to further eliminate the effect of the inaccurate period on CK, the update process of period is incorporated. After that, the simulated and experimental signals are utilized to testify the validity and superiority of the MOIOA for multiple faults detection by the comparison with MCKD. The results indicate that MOIOA is efficient to extract weak fault features even with heavy noise and harmonic interferences.

Journal ArticleDOI
TL;DR: A new fault feature extraction method for rolling bearing combining EEMD and improved frequency band entropy (IFBE) is proposed, successfully applied to simulated data and actual data, which can accurately diagnose fault characteristics of bearing and prove the effectiveness and advantages of the method.
Abstract: Ensemble empirical mode decomposition (EEMD) is widely used in condition monitoring of modern machine for its unique advantages. However, when the signal-to-noise ratio is low, the de-noising function of it is often not ideal. Thus, a new fault feature extraction method for rolling bearing combining EEMD and improved frequency band entropy (IFBE) is proposed, i.e., EEMD–IFBE. According to the problem of multiple intrinsic mode functions (IMFs) generated by EEMD, how to select the sensitive IMF(s) that can better reflect fault characteristics, a novel method based on FBE for sensitive IMF is proposed. In addition, since the bandwidth parameter is set empirically when the band-pass filter is designed based on the original FBE, a novel bandwidth parameter optimization method based on the principle of maximum envelope kurtosis is proposed. First, the original vibration signal is subjected to EEMD to obtain a series of IMFs; Then, the FBE values are obtained for the original signal and each IMF component, and the bandwidth of the band-pass filter (empirically) is designed as the characteristic frequency band at the minimum entropy value, and the affiliation between the characteristic frequency band of each IMF and the characteristic frequency band of the original signal is compared, and then selecting the sensitive IMF(s) that reflects the characteristics of the fault; Third, due to the influence of background noise, it is difficult to accurately obtain the fault frequency from the selected IMF(s). Therefore, the band-pass filter designed based on FBE is used, and the bandwidth parameter is optimized based on the principle of envelope kurtosis maximum, and then the selected sensitive IMF is band-pass filtered. Finally, the envelope power spectrum analysis is performed on the filtered signal to extract the fault characteristic frequency, and then the fault diagnosis of the bearing is realized. The method is successfully applied to simulated data and actual data of rolling bearing, which can accurately diagnose fault characteristics of bearing and prove the effectiveness and advantages of the method.

Journal ArticleDOI
Cem Onat1
TL;DR: A simple design method to tune parameters of a PI-PD controller for the control of the unstable processes with time delay is presented based on plotting the stability boundary locus, which is a locus dependent on the parameters of the controller and frequency, in the parameter plane.
Abstract: PID controllers are still widely practiced in the industrial systems. In the literature, many publications can be found considering PID controller design for unstable processes. However, owing to the structural limitations of PID controllers, generally, good closed loop performance cannot be achieved with a PID for controlling unstable processes and usually a step response with a high overshoot and oscillation is obtained. On the other hand, PI-PD controllers are proved to give very satisfactory closed loop performances for unstable processes. The paper presents a simple design method to tune parameters of a PI-PD controller for the control of the unstable processes with time delay. The proposed method is based on plotting the stability boundary locus, which is a locus dependent on the parameters of the controller and frequency, in the parameter plane. The method uses a new concept named centroid of the convex stability region. Simulation examples and an experimental application are given to illustrate the superiority of the proposed method over some existing ones.

Journal ArticleDOI
TL;DR: Case studies and comparisons with the continuous Morlet wavelet transform (CMWT) and the tunable Q-factor wavelettransform (TQWT) demonstrate the effectiveness and superiority of the CMQGWT for bearing diagnostic information extraction and fault identification.
Abstract: Rolling element bearings are key and also vulnerable machine elements in rotating machinery. Fault diagnosis of rolling element bearings is significant for guaranteeing machinery safety and functionality. To accurately extract bearing diagnostic information, a time-frequency analysis method based on continuous wavelet transform (CWT) and multiple Q-factor Gabor wavelets (MQGWs) (termed CMQGWT) is introduced in this paper. In the CMQGWT method, Gabor wavelets with multiple Q-factors are adopted and sets of the continuous wavelet coefficients for each Q-factor are combined to generate time-frequency map. By this way, the resolution of the CWT time-frequency map can be greatly increased and the diagnostic information can be accurately identified. Numerical simulation is carried out and verified the effectiveness of the proposed method. Case studies and comparisons with the continuous Morlet wavelet transform (CMWT) and the tunable Q-factor wavelet transform (TQWT) demonstrate the effectiveness and superiority of the CMQGWT for bearing diagnostic information extraction and fault identification.

Journal ArticleDOI
TL;DR: To achieve the optimal BSR output, the IABSR method based on salp swarm algorithm (SSA) is presented and optimizes not only the BSR system parameters but also the calculation step size.
Abstract: Machinery vibration signal is a typical multi-component signal and fault features are often submerged by some interference components. To accurately extract fault features, a weak feature enhancement method based on empirical wavelet transform (EWT) and an improved adaptive bistable stochastic resonance (IABSR) is proposed. This method makes full use of the signal decomposition performance of EWT and the signal enhancement of the IABSR to achieve the purpose of fault feature enhancement in low frequency band of FFT spectrum. Firstly, EWT is used as the preprocessing program of bistable stochastic resonance (BSR) to decompose the machinery vibration signal into a set of sub-components. Then, the sensitive component that contains main fault information is further input into BSR system to enhance fault features with the assistance of residual noises. Finally, the fault features are identified from fast Fourier transform (FFT) spectrum of the BSR output. To achieve the optimal BSR output, the IABSR method based on salp swarm algorithm (SSA) is presented. Compared with the tradition adaptive BSR (ABSR), the IABSR optimizes not only the BSR system parameters but also the calculation step size. Two case studies on machinery fault diagnosis demonstrate the effectiveness and superiority of the proposed method. In addition, the proposed method is easy to implement and is robust to noise to some extent.

Journal ArticleDOI
TL;DR: Simulation and experiments results indicated that the proposed parameter optimized FEEMD-MAIHND method can effectively identify the weak impulse fault feature of rolling bearing.
Abstract: Incipient Fault Detection of Rolling Bearing with heavy background noise and interference harmonics is a hot topic. In this paper, a new method based on parameter optimized fast EEMD (FEEMD) and Maximum Autocorrelation Impulse Harmonic to Noise Deconvolution (MAIHND) method is proposed for detecting the incipient fault of rolling bearing. Firstly, the FEEMD method with parameters optimization is used to reduce the noise and eliminate the interference harmonics of the fault signal. As a noise assistant improved method, the FEEMD can reduce the mode mixing and enhance the calculation efficiency significantly. Secondly, a new indicator is developed to select the sensitive IMF. Finally, a novel MAIHND method is employed to extract impulse fault feature from the sensitive IMF. Simulation and experiments results indicated that the proposed parameter optimized FEEMD–MAIHND method can effectively identify the weak impulse fault feature of rolling bearing. Moreover, the excellent performance of the proposed indicator for sensitive IMF component selection and MAIHND method is verified.

Journal ArticleDOI
TL;DR: A tuning rule is proposed in this paper, with the aim to minimize the load disturbance attenuation performance in the integral of time square error sense, under the constraint of a specified robustness measure for the first-order processes with deadtime.
Abstract: Active disturbance rejection control (ADRC) treats all the model uncertainties and all the external disturbances as a generalized disturbance. It uses an extended state observer (ESO) to estimate the generalized disturbance in real time, and compensate it using a state-feedback control law, thus can achieve good disturbance rejection performance. For linear ADRC (LADRC), the parameters can be tuned via the bandwidths of the ESO and the feedback control, thus an LADRC can be regarded as a fixed-structured controller with several parameters to tune, just like a PID controller. To help tuning the parameters of LADRC, a tuning rule is proposed in this paper, with the aim to minimize the load disturbance attenuation performance in the integral of time square error sense, under the constraint of a specified robustness measure for the first-order processes with deadtime. The tuning rule is tested for a variety of benchmark systems and the gravity drained tanks case, and the performances are compared with the well-known PID tuning methods.