scispace - formally typeset
Search or ask a question

Showing papers in "Journal for ImmunoTherapy of Cancer in 2022"


Journal ArticleDOI
TL;DR:
Abstract: Background Dostarlimab is a humanized monoclonal antibody that binds with high affinity to PD-1, resulting in inhibition of binding to PD-L1 and PD-L2. We report interim data from patients with endometrial cancer (EC) participating in a phase I trial of single-agent dostarlimab. Methods GARNET, an ongoing, single-arm, open-label, phase I trial of intravenous dostarlimab in advanced solid tumors, is being undertaken at 123 sites. Two cohorts of patients with EC were recruited: those with dMMR/MSI-H disease (cohort A1) and those with proficient/stable (MMRp/MSS) disease (cohort A2). Patients received dostarlimab 500 mg every 3 weeks for 4 cycles, then dostarlimab 1000 mg every 6 weeks until disease progression. The primary endpoints were objective response rate (ORR) and duration of response (DOR) per RECIST V.1.1, as assessed by blinded independent central review. Results Screening began on April 10, 2017, and 129 and 161 patients with advanced EC were enrolled in cohorts A1 and A2, respectively. The median follow-up duration was 16.3 months (IQR 9.5–22.1) for cohort A1 and 11.5 months (IQR 11.0–25.1) for cohort A2. In cohort A1, ORR was 43.5% (95% CI 34.0% to 53.4%) with 11 complete responses and 36 partial responses. In cohort A2, ORR was 14.1% (95% CI 9.1% to 20.6%) with three complete responses and 19 partial responses. Median DOR was not reached in either cohort. In the combined cohorts, the majority of treatment-related adverse events (TRAEs) were grade 1–2 (75.5%), most commonly fatigue (17.6%), diarrhea (13.8%), and nausea (13.8%). Grade≥3 TRAEs occurred in 16.6% of patients, and 5.5% discontinued dostarlimab because of TRAEs. No deaths were attributable to dostarlimab. Conclusion Dostarlimab demonstrated durable antitumor activity in both dMMR/MSI-H (ORR 43.5%) and MMRp/MSS EC (ORR 14.1%) with a manageable safety profile. Trial registration number NCT02715284.

95 citations


Journal ArticleDOI
TL;DR: Neoadjuvant camrelizumab plus carboplatin and nab-paclitaxel had manageable treatment-related adverse effects and induced an objective response in 90.5% of patients, demonstrating its antitumor efficacy in resectable ESCC.
Abstract: Background Programmed cell death 1 (PD-1) blockade induces tumor regression in patients with advanced esophageal squamous cell carcinoma (ESCC); however, little is known about the efficacy of PD-1 blockade as neoadjuvant therapy in resectable ESCC. We aim to assess the safety and feasibility of using the combination of neoadjuvant PD-1 blockade with chemotherapy in patients with ESCC. Methods Patients with previously untreated, resectable (stage II or III) ESCC were enrolled. Each patient received two 21-day cycles of neoadjuvant treatment with camrelizumab, nab-paclitaxel, and carboplatin before undergoing surgical resection approximately 6–9 weeks after the first cycle. Results Between January 2020 and September 2020, 37 patients were screened, of whom 23 were enrolled. The neoadjuvant therapeutic regimen had an acceptable side effect profile, and no delays in surgery were observed. Severe (grade 3–4) treatment-related adverse events included neutropenia (9 of 23, 39.1%) and leukopenia (2 of 23, 8.7%). The objective response and disease control rates were 90.5% and 100%, respectively. Twenty patients received surgery, and R0 resection was achieved in all cases. Five (25%) patients had a pathological complete response (PCR) and 10 (50%) patients had a major pathological response. The proportion of patients with a high tumor mutation burden and a high expression of programmed death-ligand 1 (PD-L1) in primary tumor was significantly higher in the PCR group than in the non-PCR group (p=0.044). The number of infiltrating PD-L1+ CD163+ cells was significantly lower in the PCR group than in the non-PCR group after treatment (p=0.017). Conclusions Neoadjuvant camrelizumab plus carboplatin and nab-paclitaxel had manageable treatment-related adverse effects and induced an objective response in 90.5% of patients, demonstrating its antitumor efficacy in resectable ESCC. Trial registration number ChiCTR2000028900.

59 citations


Journal ArticleDOI
TL;DR: Ieramilimab was well tolerated as monotherapy and in combination with spartalizumab, and the toxicity profile of ieramILimab in combination in comparison to that of spartALIZumab alone.
Abstract: Background Lymphocyte-activation gene 3 (LAG-3) is an inhibitory immunoreceptor that negatively regulates T-cell activation. This paper presents preclinical characterization of the LAG-3 inhibitor, ieramilimab (LAG525), and phase I data for the treatment of patients with advanced/metastatic solid tumors with ieramilimab ±the anti-programmed cell death-1 antibody, spartalizumab. Methods Eligible patients had advanced/metastatic solid tumors and progressed after, or were unsuitable for, standard-of-care therapy, including checkpoint inhibitors in some cases. Patients received ieramilimab ±spartalizumab across various dose-escalation schedules. The primary objective was to assess the maximum tolerated dose (MTD) or recommended phase II dose (RP2D). Results In total, 255 patients were allocated to single-agent ieramilimab (n=134) and combination (n=121) treatment arms. The majority (98%) had received prior antineoplastic therapy (median, 3). Four patients experienced dose-limiting toxicities in each treatment arm across various dosing cohorts. No MTD was reached. The RP2D on a 3-week schedule was declared as 400 mg ieramilimab plus 300 mg spartalizumab and, on a 4-week schedule (once every 4 weeks; Q4W), as 800 mg ieramilimab plus 400 mg spartalizumab; tumor target (LAG-3) suppression with 600 mg ieramilimab Q4W was predicted to be similar to the Q4W, RP2D schedule. Treatment-related adverse events (TRAEs) occurred in 75 (56%) and 84 (69%) patients in the single-agent and combination arms, respectively. Most common TRAEs were fatigue, gastrointestinal, and skin disorders, and were of mild severity; seven patients experienced at least one treatment-related serious adverse event in the single-agent (5%) and combination group (5.8%). Antitumor activity was observed in the combination arm, with 3 (2%) complete responses and 10 (8%) partial responses in a mixed population of tumor types. In the combination arm, eight patients (6.6%) experienced stable disease for 6 months or longer versus six patients (4.5%) in the single-agent arm. Responding patients trended towards having higher levels of immune gene expression, including CD8 and LAG3, in tumor tissue at baseline. Conclusions Ieramilimab was well tolerated as monotherapy and in combination with spartalizumab. The toxicity profile of ieramilimab in combination with spartalizumab was comparable to that of spartalizumab alone. Modest antitumor activity was seen with combination treatment. Trial registration number NCT02460224.

54 citations


Journal ArticleDOI
TL;DR: The findings established camrelizumab and chemotherapy as a promising neoadjuvant treatment for locally advanced ESCC with robust antitumor activity and demonstrated without unexpected safety signals.
Abstract: Background Camrelizumab and chemotherapy demonstrated durable antitumor activity with a manageable safety profile as first-line treatment in patients with advanced esophageal squamous cell carcinoma (ESCC). This study aimed to evaluate the safety and efficacy of camrelizumab plus neoadjuvant chemotherapy, using pathologically complete response (pCR) as primary endpoint, in the treatment for locally advanced ESCC. Methods Patients with locally advanced but resectable thoracic ESCC, staged as T1b-4a, N2-3 (≥3 stations), and M0 or M1 lymph node metastasis (confined to the supraclavicular lymph nodes) were enrolled. Eligible patients received intravenous camrelizumab (200 mg, day 1) plus nab-paclitaxel (100 mg/m2, day 1, 8, 15) and carboplatin (area under curve of 5 mg/mL/min, day 1) of each 21-days cycle, for two cycles before surgery. The primary endpoint is pCR rate in the per-protocol population. Safety was assessed in the modified intention-to-treat population that was treated with at least one dose of camrelizumab. Results From November 20, 2019 to December 22, 2020, 60 patients were enrolled. 55 (91.7%) patients completed the full two-cycle treatment successfully. 51 patients underwent surgery and R0 resection was achieved in 50 (98.0%) patients. pCR (ypT0N0) was identified in 20 (39.2%) patients and 5 (9.8%) patients had complete response of the primary tumor but residual disease in lymph nodes alone (ypT0N+). 58 patients (96.7%) had any-grade treatment-related adverse events (TRAEs), with the most common being leukocytopenia (86.7%). 34 patients (56.7%) had adverse events of grade 3 or worse, and one patient (1.7%) occurred a grade 5 adverse event. There was no in-hospital and postoperative 30-day as well as 90-day mortality. Conclusions The robust antitumor activity of camrelizumab and chemotherapy was confirmed and demonstrated without unexpected safety signals. Our findings established camrelizumab and chemotherapy as a promising neoadjuvant treatment for locally advanced ESCC. Trial registration number ChiCTR1900026240.

50 citations


Journal ArticleDOI
TL;DR: TMB has broad clinical utility irrespective of tumor type, PD-L1 expression, or MSI status and support its use as a predictive biomarker for pembrolizumab monotherapy in participants with previously treated advanced solid tumors.
Abstract: Background Several studies have evaluated the relationship between tumor mutational burden (TMB) and outcomes of immune checkpoint inhibitors. In the phase II KEYNOTE-158 study of pembrolizumab monotherapy for previously treated recurrent or metastatic cancer, high TMB as assessed by the FoundationOne CDx was associated with an improved objective response rate (ORR). Methods We retrospectively assessed the relationship between TMB and efficacy in participants with previously treated advanced solid tumors enrolled in 12 trials that evaluated pembrolizumab monotherapy, including 3 randomized trials that compared pembrolizumab with chemotherapy. TMB was assessed in formalin-fixed, paraffin-embedded pretreatment tumor samples by whole-exome sequencing. High TMB was defined as ≥175 mutations/exome. Microsatellite instability (MSI) phenotype was based on whole-exome sequencing results. Programmed death ligand 1 (PD-L1) expression was assessed by immunohistochemistry. The primary end point was ORR assessed per RECIST V.1.1 by independent central review. Other end points included progression-free survival (PFS) assessed per RECIST V.1.1 by independent central review and overall survival (OS). Results Of the 2234 participants in the analysis, 1772 received pembrolizumab monotherapy and 462 received chemotherapy. Among the pembrolizumab-treated participants, ORR was 31.4% (95% CI 27.1 to 36.0) in the 433 participants with TMB ≥175 mutations/exome and 9.5% (95% CI 8.0 to 11.2) in the 1339 participants with TMB <175 mutations/exome. The association of TMB with ORR was observed regardless of PD-L1 expression and not driven by specific tumor types or participants with very high TMB or high MSI. In the 3 randomized controlled trials, TMB was associated with ORR (p≤0.016), PFS (p≤0.005), and OS (p≤0.029) of pembrolizumab but not of chemotherapy (p≥0.340, p≥0.643, and p≥0.174, respectively), and pembrolizumab improved efficacy versus chemotherapy in participants with TMB ≥175 mutations/exome. Conclusions TMB ≥175 mutations/exome is associated with clinically meaningful improvement in the efficacy of pembrolizumab monotherapy and improved outcomes for pembrolizumab versus chemotherapy across a wide range of previously treated advanced solid tumor types. These data suggest TMB has broad clinical utility irrespective of tumor type, PD-L1 expression, or MSI status and support its use as a predictive biomarker for pembrolizumab monotherapy in participants with previously treated advanced solid tumors.

46 citations


Journal ArticleDOI
TL;DR: Checkpoint targeting with enoblituzumab and pembrolizumab demonstrated acceptable safety and antitumor activity in patients with CPI-naïve HNSCC and NSCLC.
Abstract: Background Availability of checkpoint inhibitors has created a paradigm shift in the management of patients with solid tumors. Despite this, most patients do not respond to immunotherapy, and there is considerable interest in developing combination therapies to improve response rates and outcomes. B7-H3 (CD276) is a member of the B7 family of cell surface molecules and provides an alternative immune checkpoint molecule to therapeutically target alone or in combination with programmed cell death-1 (PD-1)–targeted therapies. Enoblituzumab, an investigational anti-B7-H3 humanized monoclonal antibody, incorporates an immunoglobulin G1 fragment crystallizable (Fc) domain that enhances Fcγ receptor-mediated antibody-dependent cellular cytotoxicity. Coordinated engagement of innate and adaptive immunity by targeting distinct members of the B7 family (B7-H3 and PD-1) is hypothesized to provide greater antitumor activity than either agent alone. Methods In this phase I/II study, patients received intravenous enoblituzumab (3–15 mg/kg) weekly plus intravenous pembrolizumab (2 mg/kg) every 3 weeks during dose-escalation and cohort expansion. Expansion cohorts included non–small cell lung cancer (NSCLC; checkpoint inhibitor [CPI]–naïve and post-CPI, programmed death-ligand 1 [PD-L1] <1%), head and neck squamous cell carcinoma (HNSCC; CPI-naïve), urothelial cancer (post-CPI), and melanoma (post-CPI). Disease was assessed using Response Evaluation Criteria in Solid Tumors version 1.1 after 6 weeks and every 9 weeks thereafter. Safety and pharmacokinetic data were provided for all enrolled patients; efficacy data focused on HNSCC and NSCLC cohorts. Results Overall, 133 patients were enrolled and received ≥1 dose of study treatment. The maximum tolerated dose of enoblituzumab with pembrolizumab at 2 mg/kg was not reached. Intravenous enoblituzumab (15 mg/kg) every 3 weeks plus pembrolizumab (2 mg/kg) every 3 weeks was recommended for phase II evaluation. Treatment-related adverse events occurred in 116 patients (87.2%) and were grade ≥3 in 28.6%. One treatment-related death occurred (pneumonitis). Objective responses occurred in 6 of 18 (33.3% [95% CI 13.3 to 59.0]) patients with CPI-naïve HNSCC and in 5 of 14 (35.7% [95% CI 12.8 to 64.9]) patients with CPI-naïve NSCLC. Conclusions Checkpoint targeting with enoblituzumab and pembrolizumab demonstrated acceptable safety and antitumor activity in patients with CPI-naïve HNSCC and NSCLC. Trial registration number NCT02475213.

38 citations


Journal ArticleDOI
TL;DR: The role of TIGIT as a checkpoint inhibitor, its interplay with the activating counter-receptor CD226, and its status as the next advance in cancer immunotherapy are discussed.
Abstract: Recent advances in understanding the roles of immune checkpoints in allowing tumors to circumvent the immune system have led to successful therapeutic strategies that have fundamentally changed oncology practice. Thus far, immunotherapies against only two checkpoint targets have been approved, CTLA-4 and PD-L1/PD-1. Antibody blockade of these targets enhances the function of antitumor T cells at least in part by relieving inhibition of the T cell costimulatory receptor CD28. These successes have stimulated considerable interest in identifying other pathways that may bte targeted alone or together with existing immunotherapies. One such immune checkpoint axis is comprised of members of the PVR/nectin family that includes the inhibitory receptor T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory domains (TIGIT). Interestingly, TIGIT acts to regulate the activity of a second costimulatory receptor CD226 that works in parallel to CD28. There are currently over two dozen TIGIT-directed blocking antibodies in various phases of clinical development, testament to the promise of modulating this pathway to enhance antitumor immune responses. In this review, we discuss the role of TIGIT as a checkpoint inhibitor, its interplay with the activating counter-receptor CD226, and its status as the next advance in cancer immunotherapy.

37 citations


Journal ArticleDOI
TL;DR: The results suggest that atezolizumab combined with bevacizumAB and chemotherapy is an efficacious first-line treatment in metastatic NSCLC subgroups with mKRAS and co-occurring STK11 and/or KEAP1 or TP53 mutations and/ or high PD-L1 expression.
Abstract: Background The efficacy of atezolizumab (A) and/or bevacizumab (B) with carboplatin/paclitaxel (CP) chemotherapy was explored in the phase III, randomized IMpower150 study in patients with non-squamous non-small cell lung cancer (NSCLC) according to KRAS mutations (mKRAS) and co-occurring STK11, KEAP1, or TP53 mutations. Methods Mutation status was determined by circulating tumor DNA next-generation sequencing. Overall survival (OS) and progression-free survival (PFS) were analyzed in a mutation-evaluable intention-to-treat population (MEP; n=920) and SP263 (programmed cell death ligand 1 (PD-L1)) biomarker-evaluable population (n=774). Results Within the mKRAS population (24.5% of MEP), ABCP showed numerical improvements vs BCP in median OS (19.8 vs 9.9 months; HR 0.50; 95% CI 0.34 to 0.72) and PFS (8.1 vs 5.8 months; HR 0.42; 95% CI 0.29 to 0.61)—greater than with ACP (OS: 11.7 vs 9.9 months; HR 0.63; 95% CI 0.43 to 0.91; PFS: 4.8 vs 5.8 months; HR 0.80; 95% CI 0.56 to 1.13) vs BCP. Across PD-L1 subgroups in mKRAS patients, OS and PFS were longer with ABCP vs BCP, but OS with ACP was similar to BCP in PD-L1-low and PD-L1-negative subgroups. Conversely, in KRAS-WT patients, OS was longer with ACP than with ABCP or BCP across PD-L1 subgroups. KRAS was frequently comutated with STK11, KEAP1, and TP53; these subgroups conferred different prognostic outcomes. Within the mKRAS population, STK11 and/or KEAP1 mutations were associated with inferior OS and PFS across treatments compared with STK11-WT and/or KEAP1-WT. In mKRAS patients with co-occurring mSTK11 and/or mKEAP1 (44.9%) or mTP53 (49.3%), survival was longer with ABCP than with ACP or BCP. Conclusions These analyses support previous findings of mutation of STK11 and/or KEAP1 as poor prognostic indicators. While clinical efficacy favored ABCP and ACP vs BCP in these mutational subgroups, survival benefits were greater in the mKRAS and KEAP1-WT and STK11-WT population vs mKRAS and mKEAP1 and mSTK11 population, suggesting both prognostic and predictive effects. Overall, these results suggest that atezolizumab combined with bevacizumab and chemotherapy is an efficacious first-line treatment in metastatic NSCLC subgroups with mKRAS and co-occurring STK11 and/or KEAP1 or TP53 mutations and/or high PD-L1 expression.

36 citations


Journal ArticleDOI
TL;DR: The exploratory analyses reveal relationships between molecular biomarkers and provide supportive data on how the inflammation status of the tumor microenvironment may be important for identifying predictive biomarkers of response and survival with combination immunotherapy in patients with RCC.
Abstract: Background The phase 3 CheckMate 214 trial demonstrated higher response rates and improved overall survival with nivolumab plus ipilimumab versus sunitinib in first-line therapy for advanced clear-cell renal cell carcinoma (RCC). An unmet need exists to identify patients with RCC who are most likely to benefit from treatment with nivolumab plus ipilimumab. Methods In exploratory analyses, pretreatment levels of programmed death ligand 1 were assessed by immunohistochemistry. Genomic and transcriptomic biomarkers (including tumor mutational burden and gene expression signatures) were also investigated. Results Biomarkers previously associated with benefit from immune checkpoint inhibitor-containing regimens in RCC were not predictive for survival in patients with RCC treated with nivolumab plus ipilimumab. Analysis of gene expression identified an association between an inflammatory response and progression-free survival with nivolumab plus ipilimumab. Conclusions The exploratory analyses reveal relationships between molecular biomarkers and provide supportive data on how the inflammation status of the tumor microenvironment may be important for identifying predictive biomarkers of response and survival with combination immunotherapy in patients with RCC. Further validation may help to provide biomarker-driven precision treatment for patients with RCC.

35 citations


Journal ArticleDOI
TL;DR: Patients with dMMR/MSI-H gastrointestinal cancers with peritoneal metastases and ascites should be considered as a peculiar subgroup with highly unfavorable outcomes to current ICI-based therapies, as well as next-generation ICIs or intraperitoneal approaches.
Abstract: Background Despite unprecedented benefit from immune checkpoint inhibitors (ICIs) in patients with mismatch repair deficient (dMMR)/microsatellite instability high (MSI-H) advanced gastrointestinal cancers, a relevant proportion of patients shows primary resistance or short-term disease control. Since malignant effusions represent an immune-suppressed niche, we investigated whether peritoneal involvement with or without ascites is a poor prognostic factor in patients with dMMR/MSI-H metastatic colorectal cancer (mCRC) and gastric cancer (mGC) receiving ICIs. Methods We conducted a global multicohort study at Tertiary Cancer Centers and collected clinic-pathological data from a cohort of patients with dMMR/MSI-H mCRC treated with anti-PD-(L)1 ±anti-CTLA-4 agents at 12 institutions (developing set). A cohort of patients with dMMR/MSI-high mGC treated with anti-PD-1 agents±chemotherapy at five institutions was used as validating dataset. Results The mCRC cohort included 502 patients. After a median follow-up of 31.2 months, patients without peritoneal metastases and those with peritoneal metastases and no ascites had similar outcomes (adjusted HR (aHR) 1.15, 95% CI 0.85 to 1.56 for progression-free survival (PFS); aHR 0.96, 95% CI 0.65 to 1.42 for overall survival (OS)), whereas inferior outcomes were observed in patients with peritoneal metastases and ascites (aHR 2.90, 95% CI 1.70 to 4.94; aHR 3.33, 95% CI 1.88 to 5.91) compared with patients without peritoneal involvement. The mGC cohort included 59 patients. After a median follow-up of 17.4 months, inferior PFS and OS were reported in patients with peritoneal metastases and ascites (aHR 3.83, 95% CI 1.68 to 8.72; aHR 3.44, 95% CI 1.39 to 8.53, respectively), but not in patients with only peritoneal metastases (aHR 1.87, 95% CI 0.64 to 5.46; aHR 2.15, 95% CI 0.64 to 7.27) when compared with patients without peritoneal involvement. Conclusions Patients with dMMR/MSI-H gastrointestinal cancers with peritoneal metastases and ascites should be considered as a peculiar subgroup with highly unfavorable outcomes to current ICI-based therapies. Novel strategies to target the immune-suppressive niche in malignant effusions should be investigated, as well as next-generation ICIs or intraperitoneal approaches.

35 citations


Journal ArticleDOI
TL;DR: Efficacy of ISA101 and nivolumab remains promising in long-term follow-up and correlated expression of immune response, inflammatory response and interferon-signaling pathway genes were correlated with clinical response.
Abstract: Background The combination of ISA101, a human papilloma virus (HPV) 16 peptide vaccine, and nivolumab showed a promising response rate of 33% in patients with incurable HPV-16+ cancer. Here we report long-term clinical outcomes and immune correlates of response. Methods Patients with advanced HPV-16+ cancer and less than two prior regimens for recurrence were enrolled to receive ISA101 (100 µg/peptide) on days 1, 22, and 50 and nivolumab 3 mg/kg every 2 weeks beginning day 8 for up to 1 year. Baseline tumor samples were stained with multiplex immunofluorescence for programmed death-ligand 1 (PD-L1), programmed cell death protein-1 (PD-1), CD3, CD8, CD68, and pan-cytokeratin in a single panel and scanned with the Vectra 3.0 multispectral microscope. Whole transcriptome analysis of baseline tumors was performed with Affymetrix Clariom D arrays. Differential gene expression analysis was performed on responders versus non-responders. Results Twenty-four patients were followed for a median of 46.5 months (95% CI, 46.0 months to not reached (NR)). The median duration of response was 11.2 months (95% CI, 8.51 months to NR); three out of eight (38%) patients with objective response were without progression at 3 years. The median and 3-year overall survival were 15.3 months (95% CI, 10.6 months to 27.2 months) and 12.5% (95% CI, 4.3% to 36%), respectively. The scores for activated T cells ((CD3+PD-1+)+(CD3+CD8+PD-1+)), activated cytotoxic T cells (CD3+CD8+PD-1+), and total macrophage ((CD68+PD-L1−)+(CD68+PD-L1+)) in tumor were directly correlated with clinical response (p<0.05) and depth of response with the two complete response patients having the highest degree of CD8+ T cells. Gene expression analysis revealed differential regulation of 357 genes (≥1.25 fold) in non-responders versus responders (p<0.05). Higher expression of immune response, inflammatory response and interferon-signaling pathway genes were correlated with clinical response (p<0.05). Conclusions Efficacy of ISA101 and nivolumab remains promising in long-term follow-up. Increased infiltration by PD-1+ T cells and macrophages was predictive of response. Enrichment in gene sets associated with interferon-γ response and immune infiltration strongly predicted response to therapy. A randomized trial is ongoing to test this strategy and to further explore correlates of immune response with combined nivolumab and ISA101, versus nivolumab alone. Trial registration number NCT02426892.

Journal ArticleDOI
TL;DR: The cellular and molecular mechanisms of adenosine-mediated immunosuppression, preclinical investigation ofAdenosine signaling blockade, recent response data from clinical trials with A2AR, CD73, CD39 and PD1/L1 inhibitors, and ongoing development of predictive gene signatures to enhance combinatorial immune-based therapies are discussed.
Abstract: Increasing evidence supports targeting the adenosine pathway in immuno-oncology with several clinical programs directed at adenosine A2 receptor (A2AR, A2BR), CD73 and CD39 in development. Through a cyclic-AMP-mediated intracellular cascade, adenosine shifts the cytokine and cellular profile of the tumor microenvironment away from cytotoxic T cell inflammation toward one of immune tolerance. A perpetuating cycle of tumor cell proliferation, tissue injury, dysregulated angiogenesis, and hypoxia promote adenosine accumulation via ATP catabolism. Adenosine receptor (eg, A2AR, A2BR) stimulation of both the innate and adaptive cellular precursors lead to immunosuppressive phenotypic differentiation. Preclinical work in various tumor models with adenosine receptor inhibition has demonstrated restoration of immune cell function and tumor regression. Given the broad activity but known limitations of anti-programmed cell death protein (PD1) therapy and other checkpoint inhibitors, ongoing studies have sought to augment the successful outcomes of anti-PD1 therapy with combinatorial approaches, particularly adenosine signaling blockade. Preliminary data have demonstrated an optimal safety profile and enhanced overall response rates in several early phase clinical trials with A2AR and more recently CD73 inhibitors. However, beneficial outcomes for both monotherapy and combinations have been mostly lower than expected based on preclinical studies, indicating a need for more nuanced patient selection or biomarker integration that might predict and optimize patient outcomes. In the context of known immuno-oncology biomarkers such as tumor mutational burden and interferon-associated gene expression, a comparison of adenosine-related gene signatures associated with clinical response indicates an underlying biology related to immunosuppression, angiogenesis, and T cell inflammation. Importantly, though, adenosine associated gene expression may point to a unique intratumoral phenotype independent from IFN-γ related pathways. Here, we discuss the cellular and molecular mechanisms of adenosine-mediated immunosuppression, preclinical investigation of adenosine signaling blockade, recent response data from clinical trials with A2AR, CD73, CD39 and PD1/L1 inhibitors, and ongoing development of predictive gene signatures to enhance combinatorial immune-based therapies.

Journal ArticleDOI
TL;DR: Perioperative camrelizumab plus apatinib displays a promising efficacy and manageable toxicity in patients with resectable HCC and ctDNA revealed a higher positive rate among patients with HCC with stage IIb–IIIa disease.
Abstract: Objective This study aimed to assess the efficacy and safety of camrelizumab plus apatinib in patients with resectable hepatocellular carcinoma (HCC) as neoadjuvant therapy. Methods Initially, 20 patients with HCC were screened and 18 patients with resectable HCC were enrolled in this open-label, single-arm, phase II clinical trial. Patients received three cycles of neoadjuvant therapy including three doses of camrelizumab concurrent with apatinib for 21 days followed by surgery. Four to 8 weeks after surgery, patients received eight cycles of adjuvant therapy with camrelizumab in combination with apatinib. Major pathological reactions (MPR), complete pathological reactions (pCR), objective response rate (ORR), relapse-free survival (RFS), and adverse events (AE) were assessed. In addition, cancer tissue and plasma samples were collected before and after treatment, and genetic differences between responding and non-responding lesions were compared by tumor immune microenvironment (TIME) analysis, circulating tumor DNA (ctDNA) analysis and proteomics analysis. Results In 18 patients with HCC who completed neoadjuvant therapy, 3 (16.7%) and 6 (33.3%) patients with HCC reached ORR based on Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1 and modified RECIST criteria, respectively. Of the 17 patients with HCC who received surgical resection, 3 (17.6%) patients with HCC reported MPR and 1 (5.9%) patient with HCC achieved pCR. The 1-year RFS rate of the enrolled patients was 53.85% (95% CI: 24.77% to 75.99%). Grade 3/4 AEs were reported in 3 (16.7%) of the 18 patients, with the most common AEs being rash (11.1%), hypertension (5.6%), drug-induced liver damage (5.6%), and neutropenia (5.6%) in the preoperative phase. The 289 NanoString panel RNA sequencing showed that TIME cell infiltration especially dendritic cells (DCs) infiltration was better in responding tumors than in non-responding tumors. Our results of ctDNA revealed a higher positive rate (100%) among patients with HCC with stage IIb–IIIa disease. When comparing patients with pCR/MPR and non-MPR, we observed more mutations in patients who achieved pCR/MPR at baseline (6 mutations vs 2.5 mutations, p=0.025). Patients who were ctDNA positive after adjuvant therapy presented a trend of shorter RFS than those who were ctDNA negative. Proteomic analysis suggested that abnormal glucose metabolism in patients with multifocal HCC might be related to different sensitivity of treatment in different lesions. Conclusion Perioperative camrelizumab plus apatinib displays a promising efficacy and manageable toxicity in patients with resectable HCC. DCs infiltration might be a predictive marker of response to camrelizumab and apatinib as well as patients’ recurrence. ctDNA as a compose biomarker can predict pathological response and relapse. Abnormal glucose metabolism in patients with multifocal HCC may be related to different sensitivity of treatment in different lesions. Trial registration number NCT04297202.

Journal ArticleDOI
TL;DR: A worthwhile future goal in the treatment of Her2+ breast cancer is to promote combinatorial approaches that better eradicate HER2+ cancer cells via enhanced immunological mechanisms.
Abstract: Several therapeutic monoclonal antibodies (mAbs), including those targeting epidermal growth factor receptor, human epidermal growth factor receptor 2 (HER2), and CD20, mediate fragment crystallizable gamma receptor (FcγR)–dependent activities as part of their mechanism of action. These activities include induction of antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP), which are innate immune mechanisms of cancer cell elimination. FcγRs are distinguished by their affinity for the Fc fragment, cell distribution, and type of immune response they induce. Activating FcγRIIIa (CD16A) on natural killer cells plays a crucial role in mediating ADCC, and activating FcγRIIa (CD32A) and FcγRIIIa on macrophages are important for mediating ADCP. Polymorphisms in FcγRIIIa and FcγRIIa generate variants that bind to the Fc portion of antibodies with different affinities. This results in differential FcγR-mediated activities associated with differential therapeutic outcomes across multiple clinical settings, from early stage to metastatic disease, in patients with HER2+ breast cancer treated with the anti-HER2 mAb trastuzumab. Trastuzumab has, nonetheless, revolutionized HER2+ breast cancer treatment, and several HER2-directed mAbs have been developed using Fc glyco-engineering or Fc protein-engineering to enhance FcγR-mediated functions. An example of an approved anti-HER2 Fc-engineered chimeric mAb is margetuximab, which targets the same epitope as trastuzumab, but features five amino acid substitutions in the IgG 1 Fc domain that were deliberately introduced to increase binding to activating FcγRIIIa and decrease binding to inhibitory FcγRIIb (CD32B). Margetuximab enhances Fc-dependent ADCC in vitro more potently than the combination of pertuzumab (another approved mAb directed against an alternate HER2 epitope) and trastuzumab. Margetuximab administration also enhances HER2-specific B cell and T cell–mediated responses ex vivo in samples from patients treated with prior lines of HER2 antibody-based therapies. Stemming from these observations, a worthwhile future goal in the treatment of HER2+ breast cancer is to promote combinatorial approaches that better eradicate HER2+ cancer cells via enhanced immunological mechanisms.

Journal ArticleDOI
TL;DR: This study describes the specific TME of EGFR-mutant lung adenocarcinoma (LUAD) from cellular compositional and functional perspectives to better understand the immune landscape of this most common subtype of NSCLC and provides a comprehensive understanding at the single-cell level.
Abstract: Backgrounds Immunotherapy is less effective in patients with epidermal growth factor receptor (EGFR) mutant non-small-cell lung cancer (NSCLC). Lower programmed cell death-ligand 1 (PD-L1) expression and tumor mutation burden (TMB) are reported to be the underlying mechanism. Being another important factor to affect the efficacy of immunotherapy, tumor microenvironment (TME) characteristics of this subgroup of NSCLC are not comprehensively understood up to date. Hence, we initiated this study to describe the specific TME of EGFR-mutant lung adenocarcinoma (LUAD) from cellular compositional and functional perspectives to better understand the immune landscape of this most common subtype of NSCLC. Methods We used single-cell transcriptome sequencing and multiplex immunohistochemistry to investigate the immune microenvironment of EGFR-mutant and EGFR wild-type LUADs and determined the efficacy of immunotherapy. We analyzed single cells from nine treatment-naïve samples and compared them to three post-immunotherapy samples previously reported from single cell perspective using bioinformatics methods. Results We found that EGFR-mutant malignant epithelial cells had similar characteristics to the epithelial cells in non-responders. EGFR-mutant LUAD lacked CD8+ tissue-resident memory (TRM) cells, which could promote tertiary lymphoid structure generation by secreting CXCL13. In addition, other cell types, including tumor-associated macrophages and cancer-associated fibroblasts, which are capable of recruiting, retaining, and expanding CD8+ TRM cells in the TME, were also deficient in EGFR-mutant LUAD. Furthermore, EGFR-mutant LUAD had significantly less crosstalk between T cells and other cell types via programmed cell death-1 (PD-1) and PD-L1 or other immune checkpoints compared with EGFR wild-type LUAD. Conclusions Our findings provide a comprehensive understanding of the immune landscape of EGFR-mutant LUAD at the single-cell level. Based on the results, many cellular components might have negative impact on the specific TME of EGFR-mutant LUAD through influencing CD8+ TRM. Lack of CD8+ TRM might be a key factor responsible for the suppressive TME of EGFR-mutant LUAD.

Journal ArticleDOI
TL;DR: Anakinra may be useful adjunct to steroids and tocilizumab in the management of CRS and/or steroid-refractory ICANs resulting from CAR T-cell therapies, but prospective studies are needed to determine its efficacy in these settings.
Abstract: In addition to remarkable antitumor activity, chimeric antigen receptor (CAR) T-cell therapy is associated with acute toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Current treatment guidelines for CRS and ICANS include use of tocilizumab, a monoclonal antibody that blocks the interleukin (IL)-6 receptor, and corticosteroids. In patients with refractory CRS, use of several other agents as third-line therapy (including siltuximab, ruxolitinib, anakinra, dasatinib, and cyclophosphamide) has been reported on an anecdotal basis. At our institution, anakinra has become the standard treatment for the management of steroid-refractory ICANS with or without CRS, based on recent animal data demonstrating the role of IL-1 in the pathogenesis of ICANS/CRS. Here, we retrospectively analyzed clinical and laboratory parameters, including serum cytokines, in 14 patients at our center treated with anakinra for steroid-refractory ICANS with or without CRS after standard treatment with tisagenlecleucel (Kymriah) or axicabtagene ciloleucel (Yescarta) CD19-targeting CAR T. We observed statistically significant and rapid reductions in fever, inflammatory cytokines, and biomarkers associated with ICANS/CRS after anakinra treatment. With three daily subcutaneous doses, anakinra did not have a clear, clinically dramatic effect on neurotoxicity, and its use did not result in rapid tapering of corticosteroids; although neutropenia and thrombocytopenia were common at the time of anakinra dosing, there were no clear delays in hematopoietic recovery or infections that were directly attributable to anakinra. Anakinra may be useful adjunct to steroids and tocilizumab in the management of CRS and/or steroid-refractory ICANs resulting from CAR T-cell therapies, but prospective studies are needed to determine its efficacy in these settings.

Journal ArticleDOI
TL;DR: The CheckMate 920 clinical trial as discussed by the authors reported safety and efficacy results from the advanced non-clear cell renal cell carcinoma (nccRCC) cohort of patients with nivolumab and ipilimumab.
Abstract: Background CheckMate 920 (NCT02982954) is a multicohort, phase 3b/4 clinical trial of nivolumab plus ipilimumab treatment in predominantly US community-based patients with previously untreated advanced renal cell carcinoma (RCC) and clinical features mostly excluded from phase 3 trials. We report safety and efficacy results from the advanced non-clear cell RCC (nccRCC) cohort of CheckMate 920. Methods Patients with previously untreated advanced/metastatic nccRCC, Karnofsky performance status ≥70%, and any International Metastatic Renal Cell Carcinoma Database Consortium risk received up to four doses of nivolumab 3 mg/kg plus ipilimumab 1 mg/kg every 3 weeks followed by nivolumab 480 mg every 4 weeks for ≤2 years or until disease progression/unacceptable toxicity. The primary endpoint was incidence of grade ≥3 immune-mediated adverse events (AEs) within 100 days of last dose of study drug. Key secondary endpoints included objective response rate (ORR), progression-free survival (PFS; both investigator-assessed), time to response (TTR), and duration of response (DOR), all using RECIST V.1.1. Overall survival (OS) was exploratory. Results Fifty-two patients with nccRCC (unclassified histology, 42.3%; papillary, 34.6%; chromophobe, 13.5%; translocation-associated, 3.8%; collecting duct, 3.8%; renal medullary, 1.9%) received treatment. With 24.1 months minimum study follow-up, median duration of therapy (range) was 3.5 (0.0–25.8) months for nivolumab and 2.1 (0.0–3.9) months for ipilimumab. Median (range) number of doses received was 4.5 (1–28) for nivolumab and 4.0 (1–4) for ipilimumab. Grade 3–4 immune-mediated AEs were diarrhea/colitis (7.7%), rash (5.8%), nephritis and renal dysfunction (3.8%), hepatitis (1.9%), adrenal insufficiency (1.9%), and hypophysitis (1.9%). No grade 5 immune-mediated AEs occurred. ORR (n=46) was 19.6% (95% CI 9.4 to 33.9). Two patients achieved complete response (papillary, n=1; unclassified, n=1), seven achieved partial response (papillary, n=4; unclassified, n=3), and 17 had stable disease. Median TTR was 2.8 (range 2.1–14.8) months. Median DOR was not reached (range 0.0+−27.8+); eight of nine responders remain without reported progression. Median PFS (n=52) was 3.7 (95% CI 2.7 to 4.6) months. Median OS (n=52) was 21.2 (95% CI 16.6 to not estimable) months. Conclusions Nivolumab plus ipilimumab for previously untreated advanced nccRCC showed no new safety signals and encouraging antitumor activity. Trial registration number NCT02982954.

Journal ArticleDOI
TL;DR: TMB and inflammatory biomarkers (TcellinfGEP and PD-L1) may represent distinct and complementary biomarkers predicting response to anti-programmed death 1 therapies in HNSCC; further study of these relationships in randomized clinical trials is needed.
Abstract: Background To characterize genomic determinants of response to pembrolizumab in recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) in the KEYNOTE-012 study. Methods Associations between biomarkers (tumor mutational burden (TMB), neoantigen load (NL), 18-gene T-cell-inflamed gene expression profile (TcellinfGEP), and PD-L1 combined positive score (CPS)) and clinical outcomes with pembrolizumab were assessed in patients with R/M HNSCC (n=192). Tumor human papillomavirus (HPV) status was also evaluated with the use of p16 immunohistochemistry and whole exome sequencing (WES; HPV+, mapping >20 HPV reads) in pretreatment tumor samples (n=106). Results TMB, clonality-weighted TMB, and TcellinfGEP were significantly associated with objective response (p=0.0276, p=0.0201, and p=0.006, respectively), and a positive trend was observed between NL and PD-L1 CPS and clinical response (p=0.0550 and p=0.0682, respectively). No correlation was observed between TMB and TcellinfGEP (Spearman ρ=–0.026) or TMB and PD-L1 (Spearman ρ=0.009); a correlation was observed between TcellinfGEP and PD-L1 (Spearman ρ=0.511). HPV status by WES and p16 immunohistochemistry showed concordance (84% ҡ=0.573) among patients whose HPV results were available using both methods. Conclusions TMB and inflammatory biomarkers (TcellinfGEP and PD-L1) may represent distinct and complementary biomarkers predicting response to anti-programmed death 1 therapies in HNSCC; further study of these relationships in randomized clinical trials is needed. Trial registration number NCT01848834.

Journal ArticleDOI
TL;DR: A previously unrecognized role for NK cells in the antitumor immune response to radiotherapy that can be augmented by small-molecule DNA damage–response inhibitors and immune checkpoint blockade is delineated.
Abstract: Background Despite therapeutic gains from immune checkpoint inhibitors (ICI) in many tumor types, new strategies are needed to extend treatment benefits, especially in patients failing to mount effective antitumor T-cell responses. Radiation and drug therapies can profoundly affect the tumor immune microenvironment. Here, we aimed to identify immunotherapies to increase the antitumor response conferred by combined ataxia telangiectasia and Rad3-related kinase inhibition and radiotherapy. Methods Using the human papillomavirus (HPV)-negative murine oral squamous cell carcinoma model, MOC2, we assessed the nature of the antitumor response following ataxia telangiectasia and Rad3-related inhibitor (ATRi)/radiotherapy (RT) by performing RNA sequencing and detailed flow cytometry analyses in tumors. The benefit of immunotherapies based on T cell immunoreceptor with Ig and ITIM domains (TIGIT) and Programmed cell death protein 1 (PD-1) immune checkpoint blockade following ATRi/RT treatment was assessed in the MOC2 model and confirmed in another HPV-negative murine oral squamous cell carcinoma model called SCC7. Finally, immune profiling was performed by flow cytometry on blood samples in patients with head and neck squamous cell carcinoma enrolled in the PATRIOT clinical trial of combined ATRi/RT. Results ATRi enhances radiotherapy-induced inflammation in the tumor microenvironment, with natural killer (NK) cells playing a central role in maximizing treatment efficacy. We demonstrated that antitumor activity of NK cells can be further boosted with ICI targeting TIGIT and PD-1. Analyses of clinical samples from patients receiving ATRi (ceralasertib) confirm the translational potential of our preclinical studies. Conclusion This work delineates a previously unrecognized role for NK cells in the antitumor immune response to radiotherapy that can be augmented by small-molecule DNA damage–response inhibitors and immune checkpoint blockade.

Journal ArticleDOI
TL;DR: Baseline T cell density and T cell exhaustion marker expression can stratify outcomes in PD-L1 positive patients with NSCLC treated with ICI and is associated with survival in NSCLCs.
Abstract: Background Tumor infiltrating lymphocytes (TILs) reflect adaptive antitumor immune responses in cancer and are generally associated with favorable prognosis. However, the relationships between TILs subsets and their spatial arrangement with clinical benefit from immune checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC) remains less explored. Methods We used multiplexed quantitative immunofluorescence panels to determine the association of major TILs subpopulations, CD8+ cytotoxic T cells, CD4+ helper T cells and CD20+ B cells, and T cell exhaustion markers, programmed cell death protein-1 (PD-1),lymphocyte-activation gene 3 (LAG-3) and T cell immunoglobulin mucin-3 (TIM-3) with outcomes in a multi-institutional cohort of baseline tumor samples from 179 patients with NSCLC treated with ICI. The analysis of full-face tumor biopsies including numerous fields of view allowed a detailed spatial analysis and assessment of tumor immune heterogeneity using a multiparametric quadratic entropy metric (Rao’s Q Index (RQI)). Results TILs were preferentially located in the stromal tissue areas surrounding tumor-cell nests and CD8+ T cells were the most abundant subset. Higher density of stromal CD8+ cytotoxic T cells was significantly associated with longer survival, and this effect was more prominent in programmed death ligand-1 (PD-L1) positive cases. The role of baseline T cell infiltration to stratify PD-L1 expressing cases was confirmed measuring the T cell receptor-burden in an independent NSCLC cohort studied with whole-exome DNA sequencing. High levels of LAG-3 on T cells or elevated RQI heterogeneity index were associated with worse survival in the cohort. Conclusion Baseline T cell density and T cell exhaustion marker expression can stratify outcomes in PD-L1 positive patients with NSCLC treated with ICI. Spatial immune heterogeneity can be measured using the RQI and is associated with survival in NSCLC.

Journal ArticleDOI
TL;DR: Fecal microbiota and bile acids were associated with outcomes of immunotherapy for uHCC, highlighting the potential role of gut microbiota and metabolites as biomarkers to predict outcomes of ICI-treated HCC.
Abstract: Background Immune checkpoint inhibitors (ICIs) are promising agents for unresectable hepatocellular carcinoma (uHCC), but lack effective biomarker to predict outcomes. The gut microbiome can modulate tumor response to immunotherapy, but its effect on HCC remains unclear. Methods From May 2018 to February 2020, patients receiving ICI treatment for uHCC were prospectively enrolled; their fecal samples were collected before treatment. The fecal microbiota and metabolites were analyzed from 20 patients with radiology-proven objective responses (OR) and 21 randomly selected patients with progressive disease (PD). After March 2020, 33 consecutive Child-Pugh-A patients were recruited as a validation cohort. Additionally, feces from 17 healthy volunteers were collected for comparison of background microbes. Results A significant dissimilarity was observed in fecal bacteria between patients with OR and patients with PD before immunotherapy. Prevotella 9 was enriched in patients with PD, whereas Lachnoclostridium, Lachnospiraceae, and Veillonella were predominant in patients with OR. Ursodeoxycholic acid and ursocholic acid were significantly enriched in the feces of patients with OR and strongly correlated with the abundance of Lachnoclostridium. The coexistence of Lachnoclostridium enrichment and Prevotella 9 depletion significantly predicted better overall survival (OS). In the validation cohort, better progression-free survival (PFS) and OS were noted in patients who had a preferable microbial signature in comparison with counter-group (PFS: 8.8 months vs 1.8 months; OS: not reached vs 6.5 months, both p<0.001). Conclusions Fecal microbiota and bile acids were associated with outcomes of immunotherapy for uHCC. These findings highlight the potential role of gut microbiota and metabolites as biomarkers to predict outcomes of ICI-treated HCC.

Journal ArticleDOI
TL;DR: Baseline and on-therapy sPD-L1 levels in RCC have the potential to predict progressive disease on PD-1 inhibitor nivolumab.
Abstract: Background Soluble PD-L1 (sPD-L1) has been associated with worse prognosis in numerous solid tumors. We determined sPD-L1 levels before and during nivolumab treatment in two prospective clinical trials of metastatic clear cell renal cell carcinoma (RCC) and melanoma patients, and investigated its relationship to clinical factors, biomarkers, and outcome. Methods Using a new Single Molecule Array assay, serum sPD-L1 level were determined in RCC (CheckMate 009, n=91) and melanoma (CheckMate 038-Part 1, n=78) prior to, and at two time points on treatment. Gene expression data was obtained from biopsies taken prior to, and at day 28 on treatment. Results were integrated with clinical variables, tumor PD-L1 status from immuno-histochemistry, and genomic mutation status. Results In RCC patients, sPD-L1 levels were higher in patients with progressive disease as their best response. For both RCC and melanoma patients, progressive or stable disease was associated with an increase in sPD-L1 on nivolumab therapy, whereas mean sPD-L1 levels did not change or declined in patients with objective responses. By categorizing RCC patients into transcriptomic molecular subtypes, we identified a subgroup where the associations between sPD-L1 and progressive disease were particularly evident. In baseline biopsies, we identified six biological processes that were associated with sPD-L1 level in both RCC and melanoma: higher sPD-L1 is associated with lower tumor expression of the Hallmark gene sets ‘hypoxia’, ‘fatty acid metabolism’, ‘glycolysis’, ‘MTORC1 signaling’ and ‘androgen response’, and with higher expression of ‘KRAS signaling_Down’. Conclusion Baseline and on-therapy sPD-L1 levels in RCC have the potential to predict progressive disease on PD-1 inhibitor nivolumab. In a hypothesis-generating analysis of tumor gene expression, high baseline sPD-L1 is associated with a tumor metabolic state reflecting potentially targetable processes in both melanoma and RCC. In both trials, we observed associations between change in sPD-L1 on treatment and outcome metrics. sPD-L1 levels may further refine a nivolumab-refractory subtype of RCC within transcriptionally based subtypes of RCC.

Journal ArticleDOI
TL;DR: Early on-treatment, elevated expression levels of exosomal CD73 might affect the response to anti-PD-1 agents in patients with melanoma who failed to respond to therapy.
Abstract: Background CD73 is an ectonucleotidase producing the immunosuppressor mediator adenosine. Elevated levels of circulating CD73 in patients with cancer have been associated with disease progression and poor response to immunotherapy. Immunosuppressive pathways associated with exosomes can affect T-cell function and the therapeutic efficacy of anti-programmed cell-death protein 1 (anti-PD-1) therapy. Here, we conducted a retrospective pilot study to evaluate levels of exosomal CD73 before and early during treatment with anti-PD-1 agents in patients with melanoma and its potential contribution to affect T-cell functions and to influence the clinical outcomes of anti-PD-1 monotherapy. Methods Exosomes were isolated by mini size exclusion chromatography from serum of patients with melanoma (n=41) receiving nivolumab or pembrolizumab monotherapy. Expression of CD73 and programmed death-ligand 1 (PD-L1) were evaluated on exosomes enriched for CD63 by on-bead flow cytometry. The CD73 AMPase activity was evaluated by mass spectrometry, also in the presence of selective inhibitors of CD73. Interferon (IFN)-γ production and granzyme B expression were measured in CD3/28 activated T cells incubated with exosomes in presence of the CD73 substrate AMP. Levels of CD73 and PD-L1 on exosomes were correlated with therapy response. Exosomes isolated from healthy subjects were used as control. Results Isolated exosomes carried CD73 on their surface, which is enzymatically active in producing adenosine. Incubation of exosomes with CD3/28 activated T cells in the presence of AMP resulted in a significant reduction of IFN-γ release, which was reversed by the CD73 inhibitor APCP or by the selective A2A adenosine receptor antagonist ZM241385. Expression levels of exosomal CD73 from serum of patients with melanoma were not significantly different from those in healthy subjects. Early on-treatment, expression levels of both CD73 and PD-L1 on exosomes isolated from patients receiving pembrolizumab or nivolumab monotherapy were significantly increased compared with baseline. Early during therapy exosomal PD-L1 increased in responders, while exosomal CD73 resulted significantly increased in non-responders. Conclusions CD73 expressed on exosomes from serum of patients with melanoma produces adenosine and contributes to suppress T-cell functions. Early on-treatment, elevated expression levels of exosomal CD73 might affect the response to anti-PD-1 agents in patients with melanoma who failed to respond to therapy.

Journal ArticleDOI
TL;DR: Whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only is discussed, because the precise timing of treatment will be very important in future trials.
Abstract: During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.

Journal ArticleDOI
TL;DR: This study provides a proof-of-concept demonstration that moving past bacterial phylogeny and focusing on bacterial metabolome may lead to a new class of discrete molecules, and that working at the interface between microbes and the host immune system may optimize ICI therapy.
Abstract: Background Despite the great success, the therapeutic benefits of immune checkpoint inhibitors (ICIs) in cancer immunotherapy are limited by either various resistance mechanisms or ICI-associated toxic effects including gastrointestinal toxicity. Thus, novel therapeutic strategies that provide manageable side effects to existing ICIs would enhance and expand their therapeutic efficacy and application. Due to its proven role in cancer development and immune regulation, gut microbiome has gained increasing expectation as a potential armamentarium to optimize immunotherapy with ICI. However, much has to be learned to fully harness gut microbiome for clinical applicability. Here we have assessed whether microbial metabolites working at the interface between microbes and the host immune system may optimize ICI therapy. Methods To this purpose, we have tested indole-3-carboxaldehyde (3-IAld), a microbial tryptophan catabolite known to contribute to epithelial barrier function and immune homeostasis in the gut via the aryl hydrocarbon receptor (AhR), in different murine models of ICI-induced colitis. Epithelial barrier integrity, inflammation and changes in gut microbiome composition and function were analyzed. AhR, indoleamine 2,3-dioxygenase 1, interleukin (IL)-10 and IL-22 knockout mice were used to investigate the mechanism of 3-IAld activity. The function of the microbiome changes induced by 3-IAld was evaluated on fecal microbiome transplantation (FMT). Finally, murine tumor models were used to assess the effect of 3-IAld treatment on the antitumor activity of ICI. Results On administration to mice with ICI-induced colitis, 3-IAld protected mice from intestinal damage via a dual action on both the host and the microbes. Indeed, paralleling the activation of the host AhR/IL-22-dependent pathway, 3-IAld also affected the composition and function of the microbiota such that FMT from 3-IAld-treated mice protected against ICI-induced colitis with the contribution of butyrate-producing bacteria. Importantly, while preventing intestinal damage, 3-IAld did not impair the antitumor activity of ICI. Conclusions This study provides a proof-of-concept demonstration that moving past bacterial phylogeny and focusing on bacterial metabolome may lead to a new class of discrete molecules, and that working at the interface between microbes and the host immune system may optimize ICI therapy.

Journal ArticleDOI
TL;DR: Nanoparticle delivery of miR-21–3 p is a promising therapeutic approach to increase immunotherapy efficacy without obvious systemic side effects and contributes to IFN-γ-driven ferroptosis and synergizes with anti-PD-1 antibody.
Abstract: Background Although anti-programmed cell death protein 1 (PD-1) immunotherapy is greatly effective in melanoma treatment, low response rate and treatment resistance significantly hinder its efficacy. Tumor cell ferroptosis triggered by interferon (IFN)-γ that is derived from tumor-infiltrating CD8+ T cells greatly contributes to the effect of immunotherapy. However, the molecular mechanism underlying IFN-γ-mediated ferroptosis and related potentially promising therapeutic strategy warrant further clarification. MicroRNAs (miRNAs) participate in ferroptosis execution and can be delivered systemically by multiple carriers, which have manifested obvious therapeutic effects on cancer. Methods MiRNAs expression profile in IFN-γ-driven ferroptosis was obtained by RNA sequencing. Biochemical assays were used to clarify the role of miR-21-3p in IFN-γ-driven ferroptosis and the underlying mechanism. MiR-21-3p-loaded gold nanoparticles were constructed and systemically applied to analyze the role of miR-21-3p in anti-PD-1 immunotherapy in preclinical transplanted tumor model. Results MiRNAs expression profile of melanoma cells in IFN-γ-driven ferroptosis was first obtained. Then, upregulated miR-21-3p was proved to facilitate IFN-γ-mediated ferroptosis by potentiating lipid peroxidation. miR-21-3p increased the ferroptosis sensitivity by directly targeting thioredoxin reductase 1 (TXNRD1) to enhance lipid reactive oxygen species (ROS) generation. Furthermore, miR-21-3p overexpression in tumor synergized with anti-PD-1 antibody by promoting tumor cell ferroptosis. More importantly, miR-21-3p-loaded gold nanoparticles were constructed, and the systemic delivery of them increased the efficacy of anti-PD-1 antibody without prominent side effects in preclinical mice model. Ultimately, ATF3 was found to promote miR-21-3p transcription in IFN-γ-driven ferroptosis. Conclusions MiR-21–3 p upregulation contributes to IFN-γ-driven ferroptosis and synergizes with anti-PD-1 antibody. Nanoparticle delivery of miR-21–3 p is a promising therapeutic approach to increase immunotherapy efficacy without obvious systemic side effects.

Journal ArticleDOI
TL;DR: An updated and comprehensive overview into the current knowledge on the roles of TAMs in MM, as well as the therapeutic targets that are being explored as macrophage-targeted immunotherapy, which may hold key to future therapeutics against MM are provided.
Abstract: Multiple myeloma (MM) is a cancer of plasma cells in the bone marrow (BM) and represents the second most common hematological malignancy in the world. The MM tumor microenvironment (TME) within the BM niche consists of a wide range of elements which play important roles in supporting MM disease progression, survival, proliferation, angiogenesis, as well as drug resistance. Together, the TME fosters an immunosuppressive environment in which immune recognition and response are repressed. Macrophages are a central player in the immune system with diverse functions, and it has been long established that macrophages play a critical role in both inducing direct and indirect immune responses in cancer. Tumor-associated macrophages (TAMs) are a major population of cells in the tumor site. Rather than contributing to the immune response against tumor cells, TAMs in many cancers are found to exhibit protumor properties including supporting chemoresistance, tumor proliferation and survival, angiogenesis, immunosuppression, and metastasis. Targeting TAM represents a novel strategy for cancer immunotherapy, which has potential to indirectly stimulate cytotoxic T cell activation and recruitment, and synergize with checkpoint inhibitors and chemotherapies. In this review, we will provide an updated and comprehensive overview into the current knowledge on the roles of TAMs in MM, as well as the therapeutic targets that are being explored as macrophage-targeted immunotherapy, which may hold key to future therapeutics against MM.

Journal ArticleDOI
TL;DR: In this article , the authors used a microarray of 120 autoantigens commonly associated with autoimmune disease, as well as antinuclear antibody (ANA), rheumatoid factor (RF), and anti-cyclic citrullinated peptide antibody (anti-CCP), to determine if specific baseline autoantibodies were associated with immune-related adverse events (irAE).
Abstract: Introduction Immune checkpoint inhibitors (ICI) are a novel cancer therapeutic that have been successful in treating advanced malignancies; however, they also cause immune-related adverse events (irAE). Given that some irAE are clinically similar to traditional autoimmune diseases, autoantibodies have been suggested as possible biomarkers of irAE. However, there are very little data on autoantibody investigation prior to ICI. Our aim was to determine if specific baseline autoantibodies were associated with irAE and see if changes in autoantibody concentration corresponded with irAE development. Methods This study used data from an oncologic clinical trial of adaptive dosing combination ICI therapy in patients with advanced melanoma. Plasma was collected at baseline and 6 weeks after ICI initiation and tested in a microarray of 120 autoantigens commonly associated with autoimmune disease, as well as antinuclear antibody (ANA), rheumatoid factor (RF), and anti-cyclic citrullinated peptide antibody (anti-CCP). Autoantibody concentrations were compared between patients experiencing an organ-specific event versus not. Heatmaps, volcano plots and hierarchical clustering were used to determine autoantibody concentration differences among irAE patient clusters as defined by signal intensity of autoantibodies. Kaplan-Meier curves were created and a log-rank test was performed to assess differences in survival. Results The microarray analysis demonstrated that patients who experienced specific irAE had fewer differentially expressed autoantibodies at baseline than those that did not have those specific irAE, and a greater fold change (FC) in antibody concentration from baseline to 6 weeks corresponded with specific irAE development. However, no autoantibodies were identified as being predictive of specific events. Time to first irAE was less than 6 weeks in 69% of patients, and these patients had less autoantibodies at baseline. Considering ANA, RF and CCP autoantibodies, there were no significant differences between the seropositive and seronegative patients in irAE development, severity, timing or survival. Conclusion Patients with low autoantibody concentrations at baseline as well as a greater FC in autoantibody concentration over 6 weeks developed more distinct organ-specific irAE. This may suggest differences in the balance of cellular immunity and humoral pathways that are relevant in the pathogenesis of irAE, though further investigation is needed.

Journal ArticleDOI
TL;DR: These constitutive and complementary biomarkers represented the ability of NETs formation to predict the development of patients’ progression and Integrative transcriptome analyses plus clinical sample validation may facilitate the biomarker discovery and clinical transformation.
Abstract: Background Neutrophil extracellular traps (NETs) were originally thought to be formed by neutrophils to trap invading microorganisms as a defense mechanism. Increasing studies have shown that NETs play a pivotal role in tumor progression and diffusion. In this case, transcriptome analysis provides an opportunity to unearth the association between NETs and clinical outcomes of patients with pan-cancer. Methods The transcriptome sequencing data of The Cancer Genome Atlas pan-cancer primary focus was obtained from UCSC Xena, and a 19-gene NETs score was then constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression model based on the expression levels of 69 NETs initial biomarkers we collected from multistudies. In addition, multiple datasets covering multiple cancer types from other databases were collected and used to validate the signature. Gene ontology enrichment analyses were used to annotate the functions of NETs-related pathways. Immunohistochemistry (IHC) was implemented to evaluate the role of NETs-related genes in clinical patients across types of tumors, including lung adenocarcinoma (n=58), colorectal carcinoma (n=93), kidney renal clear cell carcinoma (n=90), and triple-negative breast cancer (n=80). Results The NETs score was calculated based on 19-NETs related genes according to the LASSO Cox model. The NETs score was considered a hazardous factor in most cancer types, with a higher score indicating a more adverse outcome. In addition, we found that NETs were significantly correlated to various malignant biological processes, such as the epithelial to mesenchymal transition (R=0.7444, p<0.0001), angiogenesis (R=0.5369, p<0.0001), and tumor cell proliferation (R=0.3835, p<0.0001). Furthermore, in IHC cohorts of a variety of tumors, myeloperoxidase, a gene involved in the model and a classical delegate of NETs formation, was associated with poor clinical outcomes. Conclusions Collectively, these constitutive and complementary biomarkers represented the ability of NETs formation to predict the development of patients’ progression. Integrative transcriptome analyses plus clinical sample validation may facilitate the biomarker discovery and clinical transformation.

Journal ArticleDOI
TL;DR: It is shown that bufalin can function as an antitumor immune modulator that governs the polarization of TIMs from tumor-promoting M2 toward tumor-inhibitory M1, which induces HCC suppression through the activation of effector T cell immune response.
Abstract: Background Immunotherapy for hepatocellular carcinoma (HCC) exhibits limited clinical efficacy due to immunosuppressive tumor microenvironment (TME). Tumor-infiltrating macrophages (TIMs) account for the major component in the TME, and the dominance of M2 phenotype over M1 phenotype in the TIMs plays the pivotal role in sustaining the immunosuppressive character. We thus investigate the effect of bufalin on promoting TIMs polarization toward M1 phenotype to improve HCC immunotherapy. Methods The impact of bufalin on evoking antitumor immune response was evaluated in the immunocompetent mouse HCC model. The expression profiling of macrophage-associated genes, surface markers and cytokines on bufalin treatment in vitro and in vivo were detected using flow cytometry, immunofluorescence, western blot analysis, ELISA and RT-qPCR. Cell signaling involved in M1 macrophage polarization was identified via the analysis of gene sequencing, and bufalin-governed target was explored by immunoprecipitation, western blot analysis and gain-and-loss of antitumor immune response. The combination of bufalin and antiprogrammed cell death protein 1 (anti-PD-1) antibody was also assessed in orthotopic HCC mouse model. Results In this study, we showed that bufalin can function as an antitumor immune modulator that governs the polarization of TIMs from tumor-promoting M2 toward tumor-inhibitory M1, which induces HCC suppression through the activation of effector T cell immune response. Mechanistically, bufalin inhibits overexpression of p50 nuclear factor kappa B (NF-κB) factor, leading to the predominance of p65-p50 heterodimers over p50 homodimers in the nuclei. The accumulation of p65-p50 heterodimers activates NF-κB signaling, which is responsible for the production of immunostimulatory cytokines, thus resulting in the activation of antitumor T cell immune response. Moreover, bufalin enhances the antitumor activity of anti-PD-1 antibody, and the combination exerts synergistic effect on HCC suppression. Conclusions These data expound a novel antitumor mechanism of bufalin, and facilitate exploitation of a new potential macrophage-based HCC immunotherapeutic modality.