scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Computer Science and Technology in 2020"


Journal ArticleDOI
TL;DR: This survey reviews AL query strategies for classification, regression, and clustering under the pool-based AL scenario and presents a comparative analysis of these strategies.
Abstract: Generally, data is available abundantly in unlabeled form, and its annotation requires some cost. The labeling, as well as learning cost, can be minimized by learning with the minimum labeled data instances. Active learning (AL), learns from a few labeled data instances with the additional facility of querying the labels of instances from an expert annotator or oracle. The active learner uses an instance selection strategy for selecting those critical query instances, which reduce the generalization error as fast as possible. This process results in a refined training dataset, which helps in minimizing the overall cost. The key to the success of AL is query strategies that select the candidate query instances and help the learner in learning a valid hypothesis. This survey reviews AL query strategies for classification, regression, and clustering under the pool-based AL scenario. The query strategies under classification are further divided into: informative-based, representative-based, informative- and representative-based, and others. Also, more advanced query strategies based on reinforcement learning and deep learning, along with query strategies under the realistic environment setting, are presented. After a rigorous mathematical analysis of AL strategies, this work presents a comparative analysis of these strategies. Finally, implementation guide, applications, and challenges of AL are discussed.

90 citations


Journal ArticleDOI
TL;DR: This paper summarizes and analyzes all classic blocking methods with emphasis on different blocking construction and optimization techniques, and finds that traditional blocking ER methods which depend on the fixed schema may not work in the context of highly heterogeneous information spaces.
Abstract: Entity resolution (ER) is a significant task in data integration, which aims to detect all entity profiles that correspond to the same real-world entity. Due to its inherently quadratic complexity, blocking was proposed to ameliorate ER, and it offers an approximate solution which clusters similar entity profiles into blocks so that it suffices to perform pairwise comparisons inside each block in order to reduce the computational cost of ER. This paper presents a comprehensive survey on existing blocking technologies. We summarize and analyze all classic blocking methods with emphasis on different blocking construction and optimization techniques. We find that traditional blocking ER methods which depend on the fixed schema may not work in the context of highly heterogeneous information spaces. How to use schema information flexibly is of great significance to efficiently process data with the new features of this era. Machine learning is an important tool for ER, but end-to-end and efficient machine learning methods still need to be explored. We also sum up and provide the most promising trend for future work from the directions of real-time blocking ER, incremental blocking ER, deep learning with ER, etc.

78 citations


Journal ArticleDOI
TL;DR: The Mochi framework enables composition of specialized distributed data services from a collection of connectable modules and subservices that allow each application to use a data service specialized to its needs and access patterns.
Abstract: Technology enhancements and the growing breadth of application workflows running on high-performance computing (HPC) platforms drive the development of new data services that provide high performance on these new platforms, provide capable and productive interfaces and abstractions for a variety of applications, and are readily adapted when new technologies are deployed. The Mochi framework enables composition of specialized distributed data services from a collection of connectable modules and subservices. Rather than forcing all applications to use a one-size-fits-all data staging and I/O software configuration, Mochi allows each application to use a data service specialized to its needs and access patterns. This paper introduces the Mochi framework and methodology. The Mochi core components and microservices are described. Examples of the application of the Mochi methodology to the development of four specialized services are detailed. Finally, a performance evaluation of a Mochi core component, a Mochi microservice, and a composed service providing an object model is performed. The paper concludes by positioning Mochi relative to related work in the HPC space and indicating directions for future work.

40 citations


Journal ArticleDOI
TL;DR: A new dataset with more detailed annotations for HD map modeling, a new direction for lane detection that is applicable to autonomous driving in complex road conditions, a deep neural network LineNet forlane detection, and its application toHD map modeling are introduced.
Abstract: Lane detection is essential for many aspects of autonomous driving, such as lane-based navigation and high-definition (HD) map modeling. Although lane detection is challenging especially with complex road conditions, considerable progress has been witnessed in this area in the past several years. In this survey, we review recent visual-based lane detection datasets and methods. For datasets, we categorize them by annotations, provide detailed descriptions for each category, and show comparisons among them. For methods, we focus on methods based on deep learning and organize them in terms of their detection targets. Moreover, we introduce a new dataset with more detailed annotations for HD map modeling, a new direction for lane detection that is applicable to autonomous driving in complex road conditions, a deep neural network LineNet for lane detection, and show its application to HD map modeling.

33 citations


Journal ArticleDOI
TL;DR: New capabilities developed in Hierarchical Data Format version 5 (HDF5) include: Virtual Object Layer (VOL), Data Elevator, asynchronous I/O, full-featured single-writer and multiple-reader (Full SWMR), and parallel querying.
Abstract: Scientific applications at exascale generate and analyze massive amounts of data. A critical requirement of these applications is the capability to access and manage this data efficiently on exascale systems. Parallel I/O, the key technology enables moving data between compute nodes and storage, faces monumental challenges from new applications, memory, and storage architectures considered in the designs of exascale systems. As the storage hierarchy is expanding to include node-local persistent memory, burst buffers, etc., as well as disk-based storage, data movement among these layers must be efficient. Parallel I/O libraries of the future should be capable of handling file sizes of many terabytes and beyond. In this paper, we describe new capabilities we have developed in Hierarchical Data Format version 5 (HDF5), the most popular parallel I/O library for scientific applications. HDF5 is one of the most used libraries at the leadership computing facilities for performing parallel I/O on existing HPC systems. The state-of-the-art features we describe include: Virtual Object Layer (VOL), Data Elevator, asynchronous I/O, full-featured single-writer and multiple-reader (Full SWMR), and parallel querying. In this paper, we introduce these features, their implementations, and the performance and feature benefits to applications and other libraries.

32 citations


Journal ArticleDOI
TL;DR: GekkoFS is, therefore, able to provide scalable I/O performance and reaches millions of metadata operations already for a small number of nodes, significantly outperforming the capabilities of common parallel file systems.
Abstract: Many scientific fields increasingly use high-performance computing (HPC) to process and analyze massive amounts of experimental data while storage systems in today’s HPC environments have to cope with new access patterns. These patterns include many metadata operations, small I/O requests, or randomized file I/O, while general-purpose parallel file systems have been optimized for sequential shared access to large files. Burst buffer file systems create a separate file system that applications can use to store temporary data. They aggregate node-local storage available within the compute nodes or use dedicated SSD clusters and offer a peak bandwidth higher than that of the backend parallel file system without interfering with it. However, burst buffer file systems typically offer many features that a scientific application, running in isolation for a limited amount of time, does not require. We present GekkoFS, a temporary, highly-scalable file system which has been specifically optimized for the aforementioned use cases. GekkoFS provides relaxed POSIX semantics which only offers features which are actually required by most (not all) applications. GekkoFS is, therefore, able to provide scalable I/O performance and reaches millions of metadata operations already for a small number of nodes, significantly outperforming the capabilities of common parallel file systems.

27 citations


Journal ArticleDOI
TL;DR: It is suggested that it is better to draw an analogy between the HLS development process and the embedded system design process, and to provide more elastic HLS methodology which integrates FPGAs virtual machines.
Abstract: Field-programmable gate arrays (FPGAs) have recently evolved as a valuable component of the heterogeneous computing. The register transfer level (RTL) design flows demand the designers to be experienced in hardware, resulting in a possible failure of time-to-market. High-level synthesis (HLS) permits designers to work at a higher level of abstraction through synthesizing high-level language programs to RTL descriptions. This provides a promising approach to solve these problems. However, the performance of HLS tools still has limitations. For example, designers remain exposed to various aspects of hardware design, development cycles are still time consuming, and the quality of results (QoR) of HLS tools is far behind that of RTL flows. In this paper, we survey the literature published since 2014 focusing on the performance optimization of HLS tools. Compared with previous work, we extend the scope of the performance of HLS tools, and present a set of three-level evaluation criteria, covering from ease of use of the HLS tools to promotion on specific metrics of QoR. We also propose performance evaluation equations for describing the relation between the performance optimization and the QoR. We find that it needs more efforts on the ease of use for efficient HLS tools. We suggest that it is better to draw an analogy between the HLS development process and the embedded system design process, and to provide more elastic HLS methodology which integrates FPGAs virtual machines.

24 citations


Journal ArticleDOI
TL;DR: This study proposes a novel multi-label learning method by simultaneously taking into account both the learning of label-specific features and the correlation information during the learning process, and performs better than the existing methods.
Abstract: Multi-label learning deals with the problem where each instance is associated with a set of class labels. In multi-label learning, different labels may have their own inherent characteristics for distinguishing each other, and the correlation information has shown promising strength in improving multi-label learning. In this study, we propose a novel multi-label learning method by simultaneously taking into account both the learning of label-specific features and the correlation information during the learning process. Firstly, we learn a sparse weight parameter vector for each label based on the linear regression model, and the label-specific features can be extracted according to the corresponding weight parameters. Secondly, we constrain label correlations directly on the output of labels, not on the corresponding parameter vectors which conflicts with the label-specific feature learning. Specifically, for any two related labels, their corresponding models should have similar outputs rather than similar parameter vectors. Thirdly, we also exploit the sample correlations through sparse reconstruction. The experimental results on 12 benchmark datasets show that the proposed method performs better than the existing methods. The proposed method ranks in the 1st place at 66.7% case and achieves optimal average rank in terms of all evaluation measures.

24 citations


Journal ArticleDOI
TL;DR: The motivation of this paper is to design an SNN processor to accelerate SNN inference for SNNs obtained by this DNN-to-SNN method, and to propose SIES (Spiking Neural Network Inference Engine for SCNN Accelerating).
Abstract: Neuromorphic computing is considered to be the future of machine learning, and it provides a new way of cognitive computing. Inspired by the excellent performance of spiking neural networks (SNNs) on the fields of low-power consumption and parallel computing, many groups tried to simulate the SNN with the hardware platform. However, the efficiency of training SNNs with neuromorphic algorithms is not ideal enough. Facing this, Michael et al. proposed a method which can solve the problem with the help of DNN (deep neural network). With this method, we can easily convert a well-trained DNN into an SCNN (spiking convolutional neural network). So far, there is a little of work focusing on the hardware accelerating of SCNN. The motivation of this paper is to design an SNN processor to accelerate SNN inference for SNNs obtained by this DNN-to-SNN method. We propose SIES (Spiking Neural Network Inference Engine for SCNN Accelerating). It uses a systolic array to accomplish the task of membrane potential increments computation. It integrates an optional hardware module of max-pooling to reduce additional data moving between the host and the SIES. We also design a hardware data setup mechanism for the convolutional layer on the SIES with which we can minimize the time of input spikes preparing. We implement the SIES on FPGA XCVU440. The number of neurons it supports is up to 4 000 while the synapses are 256 000. The SIES can run with the working frequency of 200 MHz, and its peak performance is 1.562 5 TOPS.

23 citations


Journal ArticleDOI
TL;DR: This work proposes a convolutional neural network (CNN)-based model to distinguish computergenerated images from natural images (NIs) with channel and pixel correlation and considers the generality of the network (or subnetwork), i.e., the newly introduced hybrid correlation module.
Abstract: With the recent tremendous advances of computer graphics rendering and image editing technologies, computergenerated fake images, which in general do not reflect what happens in the reality, can now easily deceive the inspection of human visual system. In this work, we propose a convolutional neural network (CNN)-based model to distinguish computergenerated (CG) images from natural images (NIs) with channel and pixel correlation. The key component of the proposed CNN architecture is a self-coding module that takes the color images as input to extract the correlation between color channels explicitly. Unlike previous approaches that directly apply CNN to solve this problem, we consider the generality of the network (or subnetwork), i.e., the newly introduced hybrid correlation module can be directly combined with existing CNN models for enhancing the discrimination capacity of original networks. Experimental results demonstrate that the proposed network outperforms state-of-the-art methods in terms of classification performance. We also show that the newly introduced hybrid correlation module can improve the classification accuracy of different CNN architectures.

22 citations


Journal ArticleDOI
TL;DR: This paper presents results from the Dagstuhl Seminar 17202 “Challenges and Opportunities of User-Level File Systems for HPC” and discusses application scenarios as well as design strategies for ad hoc file systems using node-local storage media.
Abstract: Storage backends of parallel compute clusters are still based mostly on magnetic disks, while newer and faster storage technologies such as flash-based SSDs or non-volatile random access memory (NVRAM) are deployed within compute nodes. Including these new storage technologies into scientific workflows is unfortunately today a mostly manual task, and most scientists therefore do not take advantage of the faster storage media. One approach to systematically include nodelocal SSDs or NVRAMs into scientific workflows is to deploy ad hoc file systems over a set of compute nodes, which serve as temporary storage systems for single applications or longer-running campaigns. This paper presents results from the Dagstuhl Seminar 17202 “Challenges and Opportunities of User-Level File Systems for HPC” and discusses application scenarios as well as design strategies for ad hoc file systems using node-local storage media. The discussion includes open research questions, such as how to couple ad hoc file systems with the batch scheduling environment and how to schedule stage-in and stage-out processes of data between the storage backend and the ad hoc file systems. Also presented are strategies to build ad hoc file systems by using reusable components for networking and how to improve storage device compatibility. Various interfaces and semantics are presented, for example those used by the three ad hoc file systems BeeOND, GekkoFS, and BurstFS. Their presentation covers a range from file systems running in production to cutting-edge research focusing on reaching the performance limits of the underlying devices.

Journal ArticleDOI
TL;DR: A recurrent neural network (RNN)-based next POI recommendation approach that considers both the location interests of similar users and contextual information (such as time, current location, and friends’ preferences) is proposed.
Abstract: In mobile social networks, next point-of-interest (POI) recommendation is a very important function that can provide personalized location-based services for mobile users. In this paper, we propose a recurrent neural network (RNN)-based next POI recommendation approach that considers both the location interests of similar users and contextual information (such as time, current location, and friends’ preferences). We develop a spatial-temporal topic model to describe users’ location interest, based on which we form comprehensive feature representations of user interests and contextual information. We propose a supervised RNN learning prediction model for next POI recommendation. Experiments based on real-world dataset verify the accuracy and efficiency of the proposed approach, and achieve best F1-score of 0.196 754 on the Gowalla dataset and 0.354 592 on the Brightkite dataset.

Journal ArticleDOI
TL;DR: This paper proposed a code smell prediction approach based on machine learning techniques and software metrics, and the local interpretable model-agnostic explanations (LIME) algorithm was further used to explain the machine learning model’s predictions and interpretability.
Abstract: Code smell detection is essential to improve software quality, enhancing software maintainability, and decrease the risk of faults and failures in the software system. In this paper, we proposed a code smell prediction approach based on machine learning techniques and software metrics. The local interpretable model-agnostic explanations (LIME) algorithm was further used to explain the machine learning model’s predictions and interpretability. The datasets obtained from Fontana et al. were reformed and used to build binary-label and multi-label datasets. The results of 10-fold cross-validation show that the performance of tree-based algorithms (mainly Random Forest) is higher compared with kernel-based and network-based algorithms. The genetic algorithm based feature selection methods enhance the accuracy of these machine learning algorithms by selecting the most relevant features in each dataset. Moreover, the parameter optimization techniques based on the grid search algorithm significantly enhance the accuracy of all these algorithms. Finally, machine learning techniques have high potential in predicting the code smells, which contribute to detect these smells and enhance the software’s quality.

Journal ArticleDOI
Ying Li1, Jiajie Xu1, Pengpeng Zhao1, Junhua Fang1, Wei Chen1, Lei Zhao1 
TL;DR: An adversarial transfer learning based model ATLRec is proposed, which effectively captures domain-sharable features for cross-domain recommendation and is evaluated on various real-world datasets and demonstrated to outperform several state-of-the-art single-domain and cross- domain recommendation methods in terms of recommendation accuracy.
Abstract: Entity linking is a new technique in recommender systems to link users’ interaction behaviors in different domains, for the purpose of improving the performance of the recommendation task. Linking-based cross-domain recommendation aims to alleviate the data sparse problem by utilizing the domain-sharable knowledge from auxiliary domains. However, existing methods fail to prevent domain-specific features to be transferred, resulting in suboptimal results. In this paper, we aim to address this issue by proposing an adversarial transfer learning based model ATLRec, which effectively captures domain-sharable features for cross-domain recommendation. In ATLRec, we leverage adversarial learning to generate representations of user-item interactions in both the source and the target domains, such that the discriminator cannot identify which domain they belong to, for the purpose of obtaining domain-sharable features. Meanwhile each domain learns its domain-specific features by a private feature extractor. The recommendation of each domain considers both domain-specific and domain-sharable features. We further adopt an attention mechanism to learn item latent factors of both domains by utilizing the shared users with interaction history, so that the representations of all items can be learned sufficiently in a shared space, even when few or even no items are shared by different domains. By this method, we can represent all items from the source and the target domains in a shared space, for the purpose of better linking items in different domains and capturing cross-domain item-item relatedness to facilitate the learning of domain-sharable knowledge. The proposed model is evaluated on various real-world datasets and demonstrated to outperform several state-of-the-art single-domain and cross-domain recommendation methods in terms of recommendation accuracy.

Journal ArticleDOI
TL;DR: This survey presents an overview and detailed investigation of data security and privacy in bitcoin system and examines the studies in the literature/Web in two categories: analyses of the attacks to the privacy, availability, and consistency of bitcoin data and summaries of the countermeasures for bitcoin data security.
Abstract: To date, bitcoin has been the most successful application of blockchain technology and has received considerable attention from both industry and academia. Bitcoin is an electronic payment system based on cryptography rather than on credit. Regardless of whether people are in the same city or country, bitcoin can be sent by any one person to any other person when they reach an agreement. The market value of bitcoin has been rising since its advent in 2009, and its current market value is US160 billion. Since its development, bitcoin itself has exposed many problems and is facing challenges from all the sectors of society; therefore, adversaries may use bitcoin’s weakness to make considerable profits. This survey presents an overview and detailed investigation of data security and privacy in bitcoin system. We examine the studies in the literature/Web in two categories: 1) analyses of the attacks to the privacy, availability, and consistency of bitcoin data and 2) summaries of the countermeasures for bitcoin data security. Based on the literature/Web, we list and describe the research methods and results for the two categories. We compare the performance of these methods and illustrate the relationship between the performance and the methods. Moreover, we present several important open research directions to identify the follow-up studies in this area.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the performance of three recent deep convolutional neural networks models (VGG-16, AlexNet and GoogLeNet/Inception V1) and evaluating it on four different benchmark datasets (FACES, Lifespan, CIFE, and FER2013 ) which also contain facial expressions performed by elderly subjects.
Abstract: Facial expression recognition is one of the most active areas of research in computer vision since one of the non-verbal communication methods by which one understands the mood/mental state of a person is the expression of face. Thus, it has been used in various fields such as human-robot interaction, security, computer graphics animation, and ambient assistance. Nevertheless, it remains a challenging task since existing approaches lack generalizability and almost all studies ignore the effects of facial attributes, such as age, on expression recognition even though the research indicates that facial expression manifestation varies with age. Recently, a lot of progress has been made in this topic and great improvements in classification task were achieved with the emergence of deep learning methods. Such approaches have shown how hierarchies of features can be directly learned from original data, thus avoiding classical hand designed feature extraction methods that generally rely on manual operations with labelled data. However, research papers systematically exploring the performance of existing deep architectures for the task of classifying expression of ageing adults are absent in the literature. In the present work a tentative to try this gap is done considering the performance of three recent deep convolutional neural networks models (VGG-16, AlexNet and GoogLeNet/Inception V1) and evaluating it on four different benchmark datasets (FACES, Lifespan, CIFE, and FER2013 ) which also contain facial expressions performed by elderly subjects. As the baseline, and with the aim of making a comparison, two traditional machine learning approaches based on handcrafted features extraction process are evaluated on the same datasets. Carrying out an exhaustive and rigorous experimentation focused on the concept of “transfer learning”, which consists of replacing the output level of the deep architectures considered with new output levels appropriate to the number of classes (facial expressions), and training three different classifiers (i.e., Random Forest, Support Vector Machine and Linear Regression), VGG-16 deep architecture in combination with Random Forest classifier was found to be the best in terms of accuracy for each dataset and for each considered age-group. Moreover, the experimentation stage showed that the deep learning approach significantly improves the baseline approaches considered, and the most noticeable improvement was obtained when considering facial expressions of ageing adults.

Journal ArticleDOI
TL;DR: This paper introduces an effective multi-label classification model by combining label ranking with threshold learning, and proposes to exploit both uncertainty and diversity in the instance space as well as the label space, and actively query the instance-label pairs which can improve the classification model most.
Abstract: In multi-label learning, it is rather expensive to label instances since they are simultaneously associated with multiple labels. Therefore, active learning, which reduces the labeling cost by actively querying the labels of the most valuable data, becomes particularly important for multi-label learning. A good multi-label active learning algorithm usually consists of two crucial elements: a reasonable criterion to evaluate the gain of querying the label for an instance, and an effective classification model, based on whose prediction the criterion can be accurately computed. In this paper, we first introduce an effective multi-label classification model by combining label ranking with threshold learning, which is incrementally trained to avoid retraining from scratch after every query. Based on this model, we then propose to exploit both uncertainty and diversity in the instance space as well as the label space, and actively query the instance-label pairs which can improve the classification model most. Extensive experiments on 20 datasets demonstrate the superiority of the proposed approach to state-of-the-art methods.

Journal ArticleDOI
TL;DR: This paper shows that the model checking algorithm for the Σ2 ∪ Π2 fragment of ReTL, which can express properties such as output reachability, is decidable in EXPSPACE.
Abstract: Neural networks, as an important computing model, have a wide application in artificial intelligence (AI) domain. From the perspective of computer science, such a computing model requires a formal description of its behaviors, particularly the relation between input and output. In addition, such specifications ought to be verified automatically. ReLU (rectified linear unit) neural networks are intensively used in practice. In this paper, we present ReLU Temporal Logic (ReTL), whose semantics is defined with respect to ReLU neural networks, which could specify value-related properties about the network. We show that the model checking algorithm for the Σ2 ∪ Π2 fragment of ReTL, which can express properties such as output reachability, is decidable in EXPSPACE. We have also implemented our algorithm with a prototype tool, and experimental results demonstrate the feasibility of the presented model checking approach.

Journal ArticleDOI
TL;DR: This work proposes the two-stream temporal convolutional networks (TS-TCNs) that take full advantage of the inter-frame vector feature and the intra- frame vector feature of skeleton sequences in the spatiotemporal representations.
Abstract: With the growing popularity of somatosensory interaction devices, human action recognition is becoming attractive in many application scenarios. Skeleton-based action recognition is effective because the skeleton can represent the position and the structure of key points of the human body. In this paper, we leverage spatiotemporal vectors between skeleton sequences as input feature representation of the network, which is more sensitive to changes of the human skeleton compared with representations based on distance and angle features. In addition, we redesign residual blocks that have different strides in the depth of the network to improve the processing ability of the temporal convolutional networks (TCNs) for long time dependent actions. In this work, we propose the two-stream temporal convolutional networks (TS-TCNs) that take full advantage of the inter-frame vector feature and the intra-frame vector feature of skeleton sequences in the spatiotemporal representations. The framework can integrate different feature representations of skeleton sequences so that the two feature representations can make up for each other’s shortcomings. The fusion loss function is used to supervise the training parameters of the two branch networks. Experiments on public datasets show that our network achieves superior performance and attains an improvement of 1.2% over the recent GCN-based (BGC-LSTM) method on the NTU RGB+D dataset.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors exploited multiple correlations between urban regions by considering the mentioned factors comprehensively rather than the geographical distance and proposed multi-graph convolution gated recurrent units (MGCGRU) for capturing these multiple hidden correlations among urban regions.
Abstract: Crowd flow prediction has become a strategically important task in urban computing, which is the prerequisite for traffic management, urban planning and public safety. However, due to variousness of crowd flows, multiple hidden correlations among urban regions affect the flows. Besides, crowd flows are also influenced by the distribution of Points-of-Interests (POIs), transitional functional zones, environmental climate, and different time slots of the dynamic urban environment. Thus, we exploit multiple correlations between urban regions by considering the mentioned factors comprehensively rather than the geographical distance and propose multi-graph convolution gated recurrent units (MGCGRU) for capturing these multiple spatial correlations. For adapting to the dynamic mobile data, we leverage multiple spatial correlations and the temporal dependency to build an urban flow prediction framework that uses only a little recent data as the input but can mine rich internal modes. Hence, the framework can mitigate the influence of the instability of data distributions in highly dynamic environments for prediction. The experimental results on two real-world datasets in Shanghai show that our model is superior to state-of-the-art methods for crowd flow prediction.

Journal ArticleDOI
Fei Fang1, Fei Luo1, Hong-Pan Zhang1, Hua-Jian Zhou1, Alix L. H. Chow2, Chunxia Xiao1 
TL;DR: The synthesized results and comparison results prove that the method outperforms some of the state-of-the-art methods based on generative adversarial networks (GANs) in visual quality of generated scene images.
Abstract: Synthesizing a complex scene image with multiple objects and background according to text description is a challenging problem. It needs to solve several difficult tasks across the fields of natural language processing and computer vision. We model it as a combination of semantic entity recognition, object retrieval and recombination, and objects’ status optimization. To reach a satisfactory result, we propose a comprehensive pipeline to convert the input text to its visual counterpart. The pipeline includes text processing, foreground objects and background scene retrieval, image synthesis using constrained MCMC, and post-processing. Firstly, we roughly divide the objects parsed from the input text into foreground objects and background scenes. Secondly, we retrieve the required foreground objects from the foreground object dataset segmented from Microsoft COCO dataset, and retrieve an appropriate background scene image from the background image dataset extracted from the Internet. Thirdly, in order to ensure the rationality of foreground objects’ positions and sizes in the image synthesis step, we design a cost function and use the Markov Chain Monte Carlo (MCMC) method as the optimizer to solve this constrained layout problem. Finally, to make the image look natural and harmonious, we further use Poisson-based and relighting-based methods to blend foreground objects and background scene image in the post-processing step. The synthesized results and comparison results based on Microsoft COCO dataset prove that our method outperforms some of the state-of-the-art methods based on generative adversarial networks (GANs) in visual quality of generated scene images.

Journal ArticleDOI
TL;DR: An end-to-end performance monitoring and diagnosis tool was developed and a performance-aware data placement mechanism was proposed to mitigate the impact of I/O interferences and performance variations of storage devices in the PFS.
Abstract: It is hard for applications to make full utilization of the peak bandwidth of the storage system in highperformance computers because of I/O interferences, storage resource misallocations and complex long I/O paths. We performed several studies to bridge this gap in the Sunway storage system, which serves the supercomputer Sunway TaihuLight. To locate these issues and connections between them, an end-to-end performance monitoring and diagnosis tool was developed to understand I/O behaviors of applications and the system. With the help of the tool, we were about to find out the root causes of such performance barriers at the I/O forwarding layer and the parallel file system layer. An application-aware I/O forwarding allocation framework was used to address the I/O interferences and resource misallocations at the I/O forwarding layer. A performance-aware data placement mechanism was proposed to mitigate the impact of I/O interferences and performance variations of storage devices in the PFS. Together, applications obtained much better I/O performance. During the process, we also proposed a lightweight storage stack to shorten the I/O path of applications with -N I/O pattern. This paper summarizes these studies and presents the lessons learned from the process.

Journal ArticleDOI
TL;DR: This paper constructs a knowledge graph from both structured and unstructured data with multiple NLP (natural language progressing) methods and shows the benefit that the knowledge graph brings to these applications: compared with the traditional machine learning approach, the well log interpretation method powered by knowledge graph shows more than 7.69% improvement of accuracy.
Abstract: There is a large amount of heterogeneous data distributed in various sources in the upstream of PetroChina. These data can be valuable assets if we can fully use them. Meanwhile, the knowledge graph, as a new emerging technique, provides a way to integrate multi-source heterogeneous data. In this paper, we present one application of the knowledge graph in the upstream of PetroChina. Specifically, we first construct a knowledge graph from both structured and unstructured data with multiple NLP (natural language progressing) methods. Then, we introduce two typical knowledge graph powered applications and show the benefit that the knowledge graph brings to these applications: compared with the traditional machine learning approach, the well log interpretation method powered by knowledge graph shows more than 7.69% improvement of accuracy.

Journal ArticleDOI
TL;DR: The results indicate that the recommended messages by ChangeDoc are very good approximations of the ones written by developers and often include important intent information that is not included in the messages generated by other tools.
Abstract: Commit messages are important complementary information used in understanding code changes. To address message scarcity, some work is proposed for automatically generating commit messages. However, most of these approaches focus on generating summary of the changed software entities at the superficial level, without considering the intent behind the code changes (e.g., the existing approaches cannot generate such message: “fixing null pointer exception”). Considering developers often describe the intent behind the code change when writing the messages, we propose ChangeDoc, an approach to reuse existing messages in version control systems for automatical commit message generation. Our approach includes syntax, semantic, pre-syntax, and pre-semantic similarities. For a given commit without messages, it is able to discover its most similar past commit from a large commit repository, and recommend its message as the message of the given commit. Our repository contains half a million commits that were collected from SourceForge. We evaluate our approach on the commits from 10 projects. The results show that 21.5% of the recommended messages by ChangeDoc can be directly used without modification, and 62.8% require minor modifications. In order to evaluate the quality of the commit messages recommended by ChangeDoc, we performed two empirical studies involving a total of 40 participants (10 professional developers and 30 students). The results indicate that the recommended messages are very good approximations of the ones written by developers and often include important intent information that is not included in the messages generated by other tools.

Journal ArticleDOI
TL;DR: The results show that ML techniques are frequently used in predicting maintainability, and ML techniques outperformed non-machine learning techniques, e.g., regression analysis (RA) techniques, while FNF outperformed SVM/R, DT, and ANN in most experiments.
Abstract: Maintaining software once implemented on the end-user side is laborious and, over its lifetime, is most often considerably more expensive than the initial software development. The prediction of software maintainability has emerged as an important research topic to address industry expectations for reducing costs, in particular, maintenance costs. Researchers and practitioners have been working on proposing and identifying a variety of techniques ranging from statistical to machine learning (ML) for better prediction of software maintainability. This review has been carried out to analyze the empirical evidence on the accuracy of software product maintainability prediction (SPMP) using ML techniques. This paper analyzes and discusses the findings of 77 selected studies published from 2000 to 2018 according to the following criteria: maintainability prediction techniques, validation methods, accuracy criteria, overall accuracy of ML techniques, and the techniques offering the best performance. The review process followed the well-known systematic review process. The results show that ML techniques are frequently used in predicting maintainability. In particular, artificial neural network (ANN), support vector machine/regression (SVM/R), regression & decision trees (DT), and fuzzy & neuro fuzzy (FNF) techniques are more accurate in terms of PRED and MMRE. The N-fold and leave-one-out cross-validation methods, and the MMRE and PRED accuracy criteria are frequently used in empirical studies. In general, ML techniques outperformed non-machine learning techniques, e.g., regression analysis (RA) techniques, while FNF outperformed SVM/R, DT, and ANN in most experiments. However, while many techniques were reported superior, no specific one can be identified as the best.

Journal ArticleDOI
TL;DR: A novel approach for learning to recognize windows in a colored facade image is presented, which locates keypoints of windows, and learns keypoint relationships to group them together into windows.
Abstract: Window detection is a key component in many graphics and vision applications related to 3D city modeling and scene visualization. We present a novel approach for learning to recognize windows in a colored facade image. Rather than predicting bounding boxes or performing facade segmentation, our system locates keypoints of windows, and learns keypoint relationships to group them together into windows. A further module provides extra recognizable information at the window center. Locations and relationships of keypoints are encoded in different types of heatmaps, which are learned in an end-to-end network. We have also constructed a facade dataset with 3 418 annotated images to facilitate research in this field. It has richly varying facade structures, occlusion, lighting conditions, and angle of view. On our dataset, our method achieves precision of 91.4% and recall of 91.0% under 50% IoU (intersection over union). We also make a quantitative comparison with state-of-the-art methods to verify the utility of our proposed method. Applications based on our window detector are also demonstrated, such as window blending.

Journal ArticleDOI
TL;DR: The results demonstrate that EasyModel can effectively reduce the modeling and formal verification difficulty of SAS systems, and can incorporate the intuitive merit of UML and the correct-by-construction merit of Event-B.
Abstract: Self-adaptive software (SAS) is gaining popularity as it can reconfigure itself in response to the dynamic changes in the operational context or itself. However, early modeling and formal analysis of SAS systems becomes increasingly difficult, as the system scale and complexity is rapidly increasing. To tackle the modeling difficulty of SAS systems, we present a refinement-based modeling and verification approach called EasyModel. EasyModel integrates the intuitive Unified Modeling Language (UML) model with the stepwise refinement Event-B model. Concretely, EasyModel: 1) creates a UML profile called AdaptML that provides an explicit description of SAS characteristics, 2) proposes a refinement modeling mechanism for SAS systems that can deal with system modeling complexity, 3) offers a model transformation approach and bridges the gap between the design model and the formal model of SAS systems, and 4) provides an efficient way to verify and guarantee the correct behaviour of SAS systems. To validate EasyModel, we present an example application and a subject-based experiment. The results demonstrate that EasyModel can effectively reduce the modeling and formal verification difficulty of SAS systems, and can incorporate the intuitive merit of UML and the correct-by-construction merit of Event-B.

Journal ArticleDOI
TL;DR: A novel approach FATOC (One-Fault-at-a-Time via OPTICS Clustering) is proposed, which can significantly outperform the traditional SBFL technique and a state-of-the-art MFL approach MSeer on 804 multi-faulty versions from nine real-world programs.
Abstract: Bug isolation is a popular approach for multi-fault localization (MFL), where all failed test cases are clustered into several groups, and then the failed test cases in each group combined with all passed test cases are used to localize only a single fault. However, existing clustering algorithms cannot always obtain completely correct clustering results, which is a potential threat for bug isolation based MFL approaches. To address this issue, we first analyze the influence of the accuracy of the clustering on the performance of MFL, and the results of a controlled study indicate that using the clustering algorithm with the highest accuracy can achieve the best performance of MFL. Moreover, previous studies on clustering algorithms also show that the elements in a higher density cluster have a higher similarity. Based on the above motivation, we propose a novel approach FATOC (One-Fault-at-a-Time via OPTICS Clustering). In particular, FATOC first leverages the OPTICS (Ordering Points to Identify the Clustering Structure) clustering algorithm to group failed test cases, and then identifies a cluster with the highest density. OPTICS clustering is a density-based clustering algorithm, which can reduce the misgrouping and calculate a density value for each cluster. Such a density value of each cluster is helpful for finding a cluster with the highest clustering effectiveness. FATOC then combines the failed test cases in this cluster with all passed test cases to localize a single-fault through the traditional spectrum-based fault localization (SBFL) formula. After this fault is localized and fixed, FATOC will use the same method to localize the next single-fault, until all the test cases are passed. Our evaluation results show that FATOC can significantly outperform the traditional SBFL technique and a state-of-the-art MFL approach MSeer on 804 multi-faulty versions from nine real-world programs. Specifically, FATOC’s performance is 10.32% higher than that of traditional SBFL when using Ochiai formula in terms of metric A-EXAM. Besides, the results also indicate that, when checking 1%, 3% and 5% statements of all subject programs, FATOC can locate 36.91%, 48.50% and 66.93% of all faults respectively, which is also better than the traditional SBFL and the MFL approach MSeer.

Journal ArticleDOI
TL;DR: This paper proposes a simple yet effective framework to help Semi-CRF achieve comparable performance with CRF-based models under similar computation complexity, and proposes a new model named Semi-SRF-Relay, to model arbitrarily long segments within linear time complexity.
Abstract: Semi-Markov conditional random fields (Semi-CRFs) have been successfully utilized in many segmentation problems, including Chinese word segmentation (CWS). The advantage of Semi-CRF lies in its inherent ability to exploit properties of segments instead of individual elements of sequences. Despite its theoretical advantage, Semi-CRF is still not the best choice for CWS because its computation complexity is quadratic to the sentence’s length. In this paper, we propose a simple yet effective framework to help Semi-CRF achieve comparable performance with CRF-based models under similar computation complexity. Specifically, we first adopt a bi-directional long short-term memory (BiLSTM) on character level to model the context information, and then use simple but effective fusion layer to represent the segment information. Besides, to model arbitrarily long segments within linear time complexity, we also propose a new model named Semi-CRF-Relay. The direct modeling of segments makes the combination with word features easy and the CWS performance can be enhanced merely by adding publicly available pre-trained word embeddings. Experiments on four popular CWS datasets show the effectiveness of our proposed methods. The source codes and pre-trained embeddings of this paper are available on https://github.com/fastnlp/fastNLP/ .

Journal ArticleDOI
TL;DR: A novel way of presenting emotion for daily users in 2D geography, fusing spatio-temporal information with emotional data, and developing EmotionDisc which is an effective tool for collecting audiences’ emotion based on emotion representation models.
Abstract: Emotion plays a crucial role in gratifying users’ needs during their experience of movies and TV series, and may be underutilized as a framework for exploring video content and analysis. In this paper, we present EmotionMap, a novel way of presenting emotion for daily users in 2D geography, fusing spatio-temporal information with emotional data. The interface is composed of novel visualization elements interconnected to facilitate video content exploration, understanding, and searching. EmotionMap allows understanding of the overall emotion at a glance while also giving a rapid understanding of the details. Firstly, we develop EmotionDisc which is an effective tool for collecting audiences’ emotion based on emotion representation models. We collect audience and character emotional data, and then integrate the metaphor of a map to visualize video content and emotion in a hierarchical structure. EmotionMap combines sketch interaction, providing a natural approach for users’ active exploration. The novelty and the effectiveness of EmotionMap have been demonstrated by the user study and experts’ feedback.