scispace - formally typeset
Search or ask a question
JournalISSN: 0022-3727

Journal of Physics D 

Institute of Physics
About: Journal of Physics D is an academic journal published by Institute of Physics. The journal publishes majorly in the area(s): Plasma & Thin film. It has an ISSN identifier of 0022-3727. Over the lifetime, 31775 publications have been published receiving 808142 citations. The journal is also known as: Journal of Physics D: Applied Physics.
Topics: Plasma, Thin film, Dielectric, Laser, Electric field


Papers
More filters
Journal ArticleDOI
Abstract: Recent research activities on the linear magnetoelectric (ME) effect?induction of magnetization by an electric field or of polarization by a magnetic field?are reviewed. Beginning with a brief summary of the history of the ME effect since its prediction in 1894, the paper focuses on the present revival of the effect. Two major sources for 'large' ME effects are identified. (i) In composite materials the ME effect is generated as a product property of a magnetostrictive and a piezoelectric compound. A linear ME polarization is induced by a weak ac magnetic field oscillating in the presence of a strong dc bias field. The ME effect is large if the ME coefficient coupling the magnetic and electric fields is large. Experiments on sintered granular composites and on laminated layers of the constituents as well as theories on the interaction between the constituents are described. In the vicinity of electromechanical resonances a ME voltage coefficient of up to 90?V?cm?1?Oe?1 is achieved, which exceeds the ME response of single-phase compounds by 3?5 orders of magnitude. Microwave devices, sensors, transducers and heterogeneous read/write devices are among the suggested technical implementations of the composite ME effect. (ii) In multiferroics the internal magnetic and/or electric fields are enhanced by the presence of multiple long-range ordering. The ME effect is strong enough to trigger magnetic or electrical phase transitions. ME effects in multiferroics are thus 'large' if the corresponding contribution to the free energy is large. Clamped ME switching of electrical and magnetic domains, ferroelectric reorientation induced by applied magnetic fields and induction of ferromagnetic ordering in applied electric fields were observed. Mechanisms favouring multiferroicity are summarized, and multiferroics in reduced dimensions are discussed. In addition to composites and multiferroics, novel and exotic manifestations of ME behaviour are investigated. This includes (i) optical second harmonic generation as a tool to study magnetic, electrical and ME properties in one setup and with access to domain structures; (ii) ME effects in colossal magnetoresistive manganites, superconductors and phosphates of the LiMPO4 type; (iii) the concept of the toroidal moment as manifestation of a ME dipole moment; (iv) pronounced ME effects in photonic crystals with a possibility of electromagnetic unidirectionality. The review concludes with a summary and an outlook to the future development of magnetoelectrics research.

4,315 citations

Book ChapterDOI
TL;DR: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed and the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed.
Abstract: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed. Starting from well-known basic concepts, and drawing on examples from biology and biomedicine, the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed. The way these properties are controlled and used is illustrated with reference to (i) magnetic separation of labelled cells and other biological entities; (ii) therapeutic drug, gene and radionuclide delivery; (iii) radio frequency methods for the catabolism of tumours via hyperthermia; and (iv) contrast enhancement agents for magnetic resonance imaging applications. Future prospects are also discussed.

2,815 citations

Journal ArticleDOI
TL;DR: In this article, a review of state-of-the-art synthetic routes for the preparation of magnetic nanoparticles useful for biomedical applications is presented, with a special emphasis on showing the benefits of using nanoparticles.
Abstract: This review is focused on describing state-of-the-art synthetic routes for the preparation of magnetic nanoparticles useful for biomedical applications. In addition to this topic, we have also described in some detail some of the possible applications of magnetic nanoparticles in the field of biomedicine with special emphasis on showing the benefits of using nanoparticles. Finally, we have addressed some relevant findings on the importance of having well-defined synthetic routes to produce materials not only with similar physical features but also with similar crystallochemical characteristics.

1,753 citations

Journal Article
TL;DR: In this paper, a review of state-of-the-art synthetic routes for the preparation of magnetic nanoparticles useful for biomedical applications is presented, with a special emphasis on showing the benefits of using nanoparticles.
Abstract: This review is focused on describing state-of-the-art synthetic routes for the preparation of magnetic nanoparticles useful for biomedical applications. In addition to this topic, we have also described in some detail some of the possible applications of magnetic nanoparticles in the field of biomedicine with special emphasis on showing the benefits of using nanoparticles. Finally, we have addressed some relevant findings on the importance of having well-defined synthetic routes to produce materials not only with similar physical features but also with similar crystallochemical characteristics.

1,623 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023381
2022619
20211,197
20201,168
20191,009
20181,123