scispace - formally typeset
Search or ask a question
JournalISSN: 0928-0707

Journal of Sol-Gel Science and Technology 

Springer Science+Business Media
About: Journal of Sol-Gel Science and Technology is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Sol-gel & Thin film. It has an ISSN identifier of 0928-0707. Over the lifetime, 6646 publications have been published receiving 119014 citations.
Topics: Sol-gel, Thin film, Catalysis, Nanoparticle, Chemistry


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a comparison of the band gap energy estimated from UV-vis reflectance spectra of TiO2 powders prepared by sol-gel route versus commercial TiO 2 powders, nanopowder, bulk powder and P25 is reported.
Abstract: A comparison of the band gap energy estimated from UV–vis reflectance spectra of TiO2 powders prepared by sol–gel route versus commercial TiO2 powders, nanopowder, bulkpowder and P25 is reported. The experimental results obtained from the optical absorption spectra were reported for all the TiO2 samples. Graphic representations were used to calculate Eg: absorbance versus λ; F(R) versus E; (F(R) hν)n versus E, with n = ½ for an indirect allowed transition and n = 2 for a direct allowed transition. From the results, it could be seen that Eg strongly varied according to the equation used for the graphic representation. Differences in Eg up to 0.5 eV for the same semiconductor depending on the transition chosen were observed. Accurate Eg estimation in the four semiconductors studied was obtained by using the general equation α (hν) ≈ B (hν − Eg)n (where α ~ F(R)) and indirect allowed transition.

1,290 citations

Journal ArticleDOI
TL;DR: In this paper, structural changes in sol-gel films with photo-irradiation were investigated using zinc oxide (ZnO) derived from zinc acetate, and the exposure of the films to an ultraviolet lamp induced hexagonal ZnO crystals in a relatively dense amorphous structure.
Abstract: Structural changes in sol-gel films with photo-irradiation were investigated using zinc oxide (ZnO) derived from zinc acetate. The exposure of the films to an ultraviolet lamp induced hexagonal ZnO crystals in a relatively dense amorphous structure. On the other hand, the formation of zinc metal was found in a porous gel film. The photo-induced crystallization and reduction are ascribed to the electronic excitation in the metastable non-crystalline states.

1,007 citations

Journal ArticleDOI
TL;DR: A review of sol-gel preparation of high temperature superconducting oxides is presented in this paper, where different classes of gel technologies were utilized, such as hydrolysis-condensation of metal-alkoxides, gelation, and organic polymeric gel.
Abstract: This review article focuses on the sol-gel preparation of high temperature superconducting oxides wherein different classes of gel technologies were utilized. These involve: 1) the sol-gel route based upon hydrolysis-condensation of metal-alkoxides, 2) the gelation route based upon concentration of aqueous solutions involving metal-chelates, often called as “chelate gel” or “amorphous chelate” route, and 3) the organic polymeric gel route. This paper reviews the current status of these sol-gel processes, and illustrates the underlying chemistry involved in each sol-gel technology. It is demonstrated that the chemical homogeneity of the gel is often disturbed by the differences in the chemistries of the cations. Prior to gelation the starting precursor solution containing various forms of metal-complexes must be chemically modified to overcome this problem. Illustration of a variety of strategies for success in obtaining a homogeneous multicomponent gel with no precipitation is focal point of this review article.

763 citations

Journal ArticleDOI
TL;DR: In this article, the intimate link between aerogels and thermal superinsulation is described, and the potential for non-evacuated super-insulation systems must be considered as an opportunity for sustainable development.
Abstract: This review is focused on describing the intimate link which exists between aerogels and thermal superinsulation. For long, this applied field has been considered as the most promising potential market for these nanomaterials. Today, there are several indicators suggesting that this old vision is likely to become reality in the near future. Based on recent developments in the field, we are confident that aerogels still offer the greatest potential for non-evacuated superinsulation systems and consequently must be considered as an amazing opportunity for sustainable development. The practical realization of such products however is time-consuming and a significant amount of R&D activities are still necessary to yield improved aerogel-based insulation products for mass markets.

494 citations

Journal ArticleDOI
TL;DR: The first attempts to introduce carbon into glass date back to 1951 as mentioned in this paper, and the use of carbon or carbide raw materials, and the oxidation, volatilization and decomposition that accompany high temperature melting, have limited the synthesis of true silicon oxycarbide glasses.
Abstract: The first attempts to introduce carbon into glass date back to 1951. But up until recently, the use of carbon or carbide raw materials, and the oxidation, volatilization and decomposition that accompany high temperature melting, have limited the synthesis of true silicon oxycarbide glasses. Here, the term silicon-oxycarbide refers specifically to a carbon-containing silicate glass wherein oxygen and carbon atoms share bonds with silicon in the amorphous, network structure. Thus, there is a distinction between black glass, which contains only a second-phase dispersion of elemental carbon, and oxycarbide glasses which usually contain both network carbon and elemental carbon. In addition to exploring the unique properties and applications of these glasses, per se, they are also of interest for developing models of the residual amorphous phases in polymer-derived silicon-carbide and silicon-nitride ceramics. The application of sol/gel techniques to glass synthesis has significantly advanced the development and characterization of silicon oxycarbide glasses. In this approach, alkyl-substituted silicon alkoxides, which are molecular precursors containing oxygen and carbon functionalities on the silicon, can be hydrolyzed and condensed without decomposition or loss of the carbon functional group. A low-temperature (<1000°C) heat-treatment of the gel creates a glassy silicate material whose molecular structure consists of an oxygen/carbon anionic network. In addition, there is always a blackening of the material due to elemental carbon, which forms during pyrolysis and densification of the gel. The nature of the network carbon, and especially the distribution and form of the elemental carbon, are fundamental to the structure and properties of these novel materials. Their chemical and physical characteristics as revealed by NMR, Raman and TEM are discussed in the overview. In addition, the high temperature stability of these glasses (up to 1750°C), and the effect of hot-pressing, are described. It will be shown that the silicon oxycarbide network is stable up to 1000–1200°C. The network carbon is terminated with hydrogen (i.e., CH, =CH2 and –CH3), and with polyaromatic carbon (i.e., nC6Hx) wherein most of the elemental carbon resides. These glasses can be described as molecular composites of polyaromatic graphene-rings dispersed in a silicon oxycarbide network. After heating to temperatures in excess of 1000–1200°C, the oxycarbide network decomposes through the loss of hydrogen, and a two- or three-phase glass-ceramic consisting of nanocrystalline graphite, silicon carbide, and amorphous silica or cristobalite, is created. Some of the properties and applications of these glasses/glass-ceramics for coatings, composites and porous solids are summarized.

385 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023161
2022330
2021269
2020283
2019288
2018292