scispace - formally typeset
Search or ask a question
JournalISSN: 0957-0233

Measurement Science and Technology 

IOP Publishing
About: Measurement Science and Technology is an academic journal published by IOP Publishing. The journal publishes majorly in the area(s): Computer science & Laser. It has an ISSN identifier of 0957-0233. Over the lifetime, 13111 publications have been published receiving 297613 citations. The journal is also known as: Measurement science and technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Krystek as discussed by the authors provides a comprehensive and self-contained overview of random data analysis, including derivations of the key relationships in probability and random-process theory not usually found to such extent in a book of this kind.
Abstract: This is a new edition of a book on random data analysis which has been on the market since 1966 and which was extensively revised in 1971. The book has been a bestseller since. It has been fully updated to cover new procedures developed in the last 15 years and extends the discussion to a broad range of applied fields, such as aerospace, automotive industries or biomedical research. The primary purpose of this book is to provide a practical reference and tool for working engineers and scientists investigating dynamic data or using statistical methods to solve engineering problems. It is comprehensive and self-contained and expands the coverage of the theory, including derivations of the key relationships in probability and random-process theory not usually found to such extent in a book of this kind. It could well be used as a teaching textbook for advanced courses on the analysis of random processes. The first four chapters present the background material on descriptions of data, properties of linear systems and statistical principles. They also include probability distribution formulas for one-, two- and higher-order changes of variables. Chapter five gives a comprehensive discussion of stationary random-process theory, including material on wave-number spectra, level crossings and peak values of normally distributed random data. Chapters six and seven develop mathematical relationships for the detailed analysis of single input/output and multiple input/output linear systems including algorithms. In chapters eight and nine important practical formulas to determine statistical errors in estimates of random data parameters and linear system properties from measured data are derived. Chapter ten deals with data aquisition and processing, including data qualification. Chapter eleven describes methods of data analysis such as data preparation, Fourier transforms, probability density functions, auto- and cross-correlation, spectral functions, joint record functions and multiple input/output functions. Chapter twelve shows how to handle nonstationary data analysis, classification of nonstationary data, probability structure of nonstationary data, calculation of nonstationary mean values or mean square values, correlation structures of nonstationary data and spectral structures of nonstationary data. The last chapter deals with the Hilbert transform including applications for both nondispersive and dispersive propagation problems. All chapters include many illustrations and references as well as examples and problem sets. This allows the reader to use the book for private study purposes. Altogether the book can be recommended for practical working engineers and scientists to support their daily work, as well as for university readers as a teaching textbook in advanced courses. M Krystek

3,390 citations

Journal ArticleDOI
TL;DR: A comprehensive review of existing piezoelectric generators is presented in this paper, including impact coupled, resonant and human-based devices, including large scale discrete devices and wafer-scale integrated versions.
Abstract: This paper reviews the state-of-the art in vibration energy harvesting for wireless, self-powered microsystems. Vibration-powered generators are typically, although not exclusively, inertial spring and mass systems. The characteristic equations for inertial-based generators are presented, along with the specific damping equations that relate to the three main transduction mechanisms employed to extract energy from the system. These transduction mechanisms are: piezoelectric, electromagnetic and electrostatic. Piezoelectric generators employ active materials that generate a charge when mechanically stressed. A comprehensive review of existing piezoelectric generators is presented, including impact coupled, resonant and human-based devices. Electromagnetic generators employ electromagnetic induction arising from the relative motion between a magnetic flux gradient and a conductor. Electromagnetic generators presented in the literature are reviewed including large scale discrete devices and wafer-scale integrated versions. Electrostatic generators utilize the relative movement between electrically isolated charged capacitor plates to generate energy. The work done against the electrostatic force between the plates provides the harvested energy. Electrostatic-based generators are reviewed under the classifications of in-plane overlap varying, in-plane gap closing and out-of-plane gap closing; the Coulomb force parametric generator and electret-based generators are also covered. The coupling factor of each transduction mechanism is discussed and all the devices presented in the literature are summarized in tables classified by transduction type; conclusions are drawn as to the suitability of the various techniques.

2,834 citations

Journal ArticleDOI
TL;DR: The first edition of this book as mentioned in this paper was published in 1992 and was used for the first year of a physics course at the University of Sheffield. But it was not intended to be a statistics text, nor was it intended to serve as a statistic text, but an introdution to the mathematics required for the analysis of measurements at the level of a first year laboratory course.
Abstract: Students in a science or engineering curriculum ought to be introduced early to the requirement that a meaningful measurement result should always be accompanied by a statement of its uncertainty. This book has been written specifically with this objective in mind. That the first edition has been successful in doing this is attested to by its popularity with both faculty and students, and its translation into six languages. This book is not a statistics text - nor was it intended to be - but an introdution to the mathematics required for the analysis of measurements at the level of a first-year laboratory course. Part 1 begins with uncertainty as a qualitative concept and builds slowly, using many numerical examples and exercises for the student, to develop methods for quantifying uncertainty, and ultimately relating it to the standard deviation of a statistical distribution. Along the way, Taylor develops the rules for expressing and combining (`propagating') uncertainties, and introduces the student to the gaussian (normal) distribution and some of its properties. Part 2 covers, with somewhat more mathematical rigor, specific topics such as data rejection criteria, the binomial and Poisson distributions, covariance and correlation, least-squares fitting, and the chi-squared test. I was not familiar with the first edition, and from a quick scan of the Preface I looked forward to reading this book and learning something about the state of statistical analysis in first-year university texts today. I was disappointed (in part with what the level of the book implies about the sad state of preparation of today's students). Although there are now two ISO publications ( International Vocabulary of Basic and General Terms in Metrology (VIM) and Guide to the Expression of Uncertainty in Measurement (GUM), Geneva, 1993), Taylor makes no mention of either, and never gives a formal definition of `uncertainty' (although he ultimately associates `random uncertainty' with the standard deviation of a gaussian distribution). The book also does not clearly define `error', or the distinction between error and uncertainty. The important point, that the `propagation of uncertainty' is additive in terms of variances is valid for any distributions with finite variance, is not emphasized; instead Taylor restricts the discussion solely to the normal distribution and or those that can be approximated by it. I also find it unfortunate that the book does not clearly distinguish between the variance of a sample , the variance of a distribution , and the sample estimate of the variance of the distribution ( or ). Instead, he accepts the fact that formulas for the variance with either N or N - 1 dividing the sum of the squares of the deviations from the mean exist in the literature and concludes simply: `Nevertheless, you need to be aware of both definitions. In the physics laboratory, using the more conservative... def- inition... is almost always best.' In spite of these shortcomings, the book is a significant contribution to a student laboratory reading list, and it is written at a level that facilitates a self-study program. It has an important message to deliver and it appears to be delivering it well.

2,637 citations

Journal ArticleDOI
TL;DR: In this article, a review of the 2D digital image correlation (2D DIC) technique for displacement field measurement and strain field estimation is presented, and detailed analyses of the measurement accuracy considering the influences of both experimental conditions and algorithm details are provided.
Abstract: As a practical and effective tool for quantitative in-plane deformation measurement of a planar object surface, two-dimensional digital image correlation (2D DIC) is now widely accepted and commonly used in the field of experimental mechanics. It directly provides full-field displacements to sub-pixel accuracy and full-field strains by comparing the digital images of a test object surface acquired before and after deformation. In this review, methodologies of the 2D DIC technique for displacement field measurement and strain field estimation are systematically reviewed and discussed. Detailed analyses of the measurement accuracy considering the influences of both experimental conditions and algorithm details are provided. Measures for achieving high accuracy deformation measurement using the 2D DIC technique are also recommended. Since microscale and nanoscale deformation measurement can easily be realized by combining the 2D DIC technique with high-spatial-resolution microscopes, the 2D DIC technique should find more applications in broad areas.

2,530 citations

Journal ArticleDOI
TL;DR: The appearance of this book is quite timely as it provides a much needed state-of-the-art exposition on fault detection and diagnosis, a topic of much interest to industrialists.
Abstract: The appearance of this book is quite timely as it provides a much needed state-of-the-art exposition on fault detection and diagnosis, a topic of much interest to industrialists. The material included is well organized with logical and clearly identified parts; the list of references is quite comprehensive and will be of interest to readers who wish to explore a particular subject in depth. The presentation of the subject material is clear and concise, and the contents are appropriate to postgraduate engineering students, researchers and industrialists alike. The end-of-chapter homework problems are a welcome feature as they provide opportunities for learners to reinforce what they learn by applying theory to problems, many of which are taken from realistic situations. However, it is felt that the book would be more useful, especially to practitioners of fault detection and diagnosis, if a short chapter on background statistical techniques were provided. Joe Au

1,553 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023483
2022863
2021717
2020541
2019382
2018487