scispace - formally typeset
Search or ask a question
JournalISSN: 1471-0072

Nature Reviews Molecular Cell Biology 

Nature Portfolio
About: Nature Reviews Molecular Cell Biology is an academic journal published by Nature Portfolio. The journal publishes majorly in the area(s): Medicine & Chromatin. It has an ISSN identifier of 1471-0072. Over the lifetime, 3966 publications have been published receiving 924541 citations. The journal is also known as: Nature Reviews. Molecular Cell Biology.
Topics: Medicine, Chromatin, Stem cell, RNA, DNA repair


Papers
More filters
Journal ArticleDOI
TL;DR: When epidermal growth factor and its relatives bind the ErbB family of receptors, they trigger a rich network of signalling pathways, culminating in responses ranging from cell division to death, motility to adhesion.
Abstract: When epidermal growth factor and its relatives bind the ErbB family of receptors, they trigger a rich network of signalling pathways, culminating in responses ranging from cell division to death, motility to adhesion. The network is often dysregulated in cancer and lends credence to the mantra that molecular understanding yields clinical benefit: over 25,000 women with breast cancer have now been treated with trastuzumab (Herceptin), a recombinant antibody designed to block the receptor ErbB2. Likewise, small-molecule enzyme inhibitors and monoclonal antibodies to ErbB1 are in advanced phases of clinical testing. What can this pathway teach us about translating basic science into clinical use?

6,462 citations

Journal ArticleDOI
TL;DR: It is now becoming clear that lipid micro-environments on the cell surface — known as lipid rafts — also take part in this process of signalling transduction, where protein–protein interactions result in the activation of signalling cascades.
Abstract: Signal transduction is initiated by complex protein-protein interactions between ligands, receptors and kinases, to name only a few. It is now becoming clear that lipid micro-environments on the cell surface -- known as lipid rafts -- also take part in this process. Lipid rafts containing a given set of proteins can change their size and composition in response to intra- or extracellular stimuli. This favours specific protein-protein interactions, resulting in the activation of signalling cascades.

6,080 citations

Journal ArticleDOI
TL;DR: The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues, and the convergence of signalling pathways is essential for EMT.
Abstract: The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.

6,036 citations

Journal ArticleDOI
TL;DR: How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functions of their individual membranes?
Abstract: Throughout the biological world, a 30 A hydrophobic film typically delimits the environments that serve as the margin between life and death for individual cells. Biochemical and biophysical findings have provided a detailed model of the composition and structure of membranes, which includes levels of dynamic organization both across the lipid bilayer (lipid asymmetry) and in the lateral dimension (lipid domains) of membranes. How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functionalities of their individual membranes?

5,720 citations

Journal ArticleDOI
TL;DR: Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids.
Abstract: The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways - cumulatively called the unfolded protein response (UPR). Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids. The arms of the UPR are integrated to provide a response that remodels the secretory apparatus and aligns cellular physiology to the demands imposed by ER stress.

5,701 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202369
2022129
2021124
2020114
2019104
2018116