scispace - formally typeset
Proceedings ArticleDOI

A channel access scheme for large dense packet radio networks

Timothy J. Shepard
- Vol. 26, Iss: 4, pp 219-230
Reads0
Chats0
TLDR
This paper presents a decentralized channel access scheme for scalable packet radio networks that is free of packet loss due to collisions and that at each hop requires no per-packet transmissions other than the single transmission used to convey the packet to the next-hop station.
Abstract
Prior work in the field of packet radio networks has often assumed a simple success-if-exclusive model of successful reception. This simple model is insufficient to model interference in large dense packet radio networks accurately. In this paper we present a model that more closely approximates communication theory and the underlying physics of radio communication. Using this model we present a decentralized channel access scheme for scalable packet radio networks that is free of packet loss due to collisions and that at each hop requires no per-packet transmissions other than the single transmission used to convey the packet to the next-hop station. We also show that with a modest fraction of the radio spectrum, pessimistic assumptions about propagation resulting in maximum-possible self-interference, and an optimistic view of future signal processing capabilities that a self-organizing packet radio network may scale to millions of stations within a metro area with raw per-station rates in the hundreds of megabits per second.

read more

Citations
More filters
Proceedings ArticleDOI

Energy-efficient communication protocol for wireless microsensor networks

TL;DR: The Low-Energy Adaptive Clustering Hierarchy (LEACH) as mentioned in this paper is a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network.

Energy-efficient communication protocols for wireless microsensor networks

TL;DR: LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network, is proposed.
Journal ArticleDOI

An application-specific protocol architecture for wireless microsensor networks

TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Proceedings ArticleDOI

GPSR: greedy perimeter stateless routing for wireless networks

TL;DR: Greedy Perimeter Stateless Routing is presented, a novel routing protocol for wireless datagram networks that uses the positions of routers and a packet's destination to make packet forwarding decisions and its scalability on densely deployed wireless networks is demonstrated.
Journal ArticleDOI

Mobility increases the capacity of ad hoc wireless networks

TL;DR: The per-session throughput for applications with loose delay constraints, such that the topology changes over the time-scale of packet delivery, can be increased dramatically under this assumption, and a form of multiuser diversity via packet relaying is exploited.
References
More filters
Journal ArticleDOI

A mathematical theory of communication

TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Journal ArticleDOI

The Mathematical Theory of Communication

TL;DR: The theory of communication is extended to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message anddue to the nature of the final destination of the information.
Book

Data networks

TL;DR: Undergraduate and graduate classes in computer networks and wireless communications; undergraduate classes in discrete mathematics, data structures, operating systems and programming languages.
Book

An Introduction to Signal Detection and Estimation

TL;DR: Signal Detection in Discrete Time and Signal Estimation in Continuous Time: Elements of Hypothesis Testing and Elements of Parameter Estimation.
Proceedings ArticleDOI

THE ALOHA SYSTEM: another alternative for computer communications

TL;DR: A remote-access computer system under development as part of a research program to investigate the use of radio communications for computer-computer and console-computer links and a novel form of random-access radio communications developed for use within THE ALOHA SYSTEM is described.
Related Papers (5)