scispace - formally typeset
Journal ArticleDOI

A fast learning algorithm for deep belief nets

Reads0
Chats0
TLDR
A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Abstract
We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Learning a non-linear knowledge transfer model for cross-view action recognition

TL;DR: The proposed Non-linear Knowledge Transfer Model (NKTM) is a deep network, with weight decay and sparsity constraints, which finds a shared high-level virtual path from videos captured from different unknown viewpoints to the same canonical view.
Proceedings Article

Learning Polynomials with Neural Networks

TL;DR: This paper shows that for a randomly initialized neural network with sufficiently many hidden units, the generic gradient descent algorithm learns any low degree polynomial, assuming the authors initialize the weights randomly, and shows that if they use complex-valued weights, there are no "robust local minima".
Journal ArticleDOI

A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5)

TL;DR: A hybrid CNN-LSTM model is developed by combining the convolutional neural network (CNN) with the long short-term memory (L STM) neural network for forecasting the next 24h PM2.5 concentration in Beijing, which performs the best results due to low error and short training time.
Journal ArticleDOI

Deep learning in optical metrology: a review

TL;DR: Deep learning-enabled optical metrology is a kind of data-driven approach, which has already provided numerous alternative solutions to many challenging problems in this field with better performances as discussed by the authors .
Proceedings Article

Adaptive Multi-Column Deep Neural Networks with Application to Robust Image Denoising

TL;DR: In this article, the adaptive multi-column stacked sparse denoising autoencoder (AMC-SSDA) is proposed, which combines multiple SSDAs by computing optimal column weights via solving a nonlinear optimization program and training a separate network to predict the optimal weights.
References
More filters
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Book

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference

TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Journal ArticleDOI

Shape matching and object recognition using shape contexts

TL;DR: This paper presents work on computing shape models that are computationally fast and invariant basic transformations like translation, scaling and rotation, and proposes shape detection using a feature called shape context, which is descriptive of the shape of the object.
Journal ArticleDOI

Training products of experts by minimizing contrastive divergence

TL;DR: A product of experts (PoE) is an interesting candidate for a perceptual system in which rapid inference is vital and generation is unnecessary because it is hard even to approximate the derivatives of the renormalization term in the combination rule.
Proceedings ArticleDOI

Best practices for convolutional neural networks applied to visual document analysis

TL;DR: A set of concrete bestpractices that document analysis researchers can use to get good results with neural networks, including a simple "do-it-yourself" implementation of convolution with a flexible architecture suitable for many visual document problems.
Related Papers (5)