scispace - formally typeset
Journal ArticleDOI

A fast learning algorithm for deep belief nets

Reads0
Chats0
TLDR
A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Abstract
We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Deep Learning-Based Feature Representation for AD/MCI Classification

TL;DR: This paper proposes a deep learning-based feature representation with a stacked auto-encoder for AD/MCI classification with high diagnostic accuracy and believes that there exist latent complicated patterns, e.g., non-linear relations, inherent in the low-level features.
Journal ArticleDOI

Handcrafted vs. non-handcrafted features for computer vision classification

TL;DR: A generic computer vision system designed for exploiting trained deep Convolutional Neural Networks as a generic feature extractor and mixing these features with more traditional hand-crafted features is presented, demonstrating the generalizability of the proposed approach.
Journal ArticleDOI

Stochastic Configuration Networks: Fundamentals and Algorithms

TL;DR: In this paper, the authors proposed a stochastic configuration (SCN) algorithm for neural networks, which randomly assigns the input weights and biases of hidden nodes in the light of a supervisory mechanism, and the output weights are analytically evaluated in either a constructive or selective manner.
Journal ArticleDOI

Deep-Learning-Based Drug-Target Interaction Prediction.

TL;DR: To accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, a deep-learning-based algorithmic framework named DeepDTIs is developed that reaches or outperforms other state-of-the-art methods.
Proceedings Article

Efficient Learning of Deep Boltzmann Machines

TL;DR: A new approximate inference algorithm for Deep Boltzmann Machines (DBM’s), a generative model with many layers of hidden variables, that learns a separate “recognition” model that is used to quickly initialize, in a single bottom-up pass, the values of the latent variables in all hidden layers.
References
More filters
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Book

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference

TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Journal ArticleDOI

Shape matching and object recognition using shape contexts

TL;DR: This paper presents work on computing shape models that are computationally fast and invariant basic transformations like translation, scaling and rotation, and proposes shape detection using a feature called shape context, which is descriptive of the shape of the object.
Journal ArticleDOI

Training products of experts by minimizing contrastive divergence

TL;DR: A product of experts (PoE) is an interesting candidate for a perceptual system in which rapid inference is vital and generation is unnecessary because it is hard even to approximate the derivatives of the renormalization term in the combination rule.
Proceedings ArticleDOI

Best practices for convolutional neural networks applied to visual document analysis

TL;DR: A set of concrete bestpractices that document analysis researchers can use to get good results with neural networks, including a simple "do-it-yourself" implementation of convolution with a flexible architecture suitable for many visual document problems.
Related Papers (5)