scispace - formally typeset
Journal ArticleDOI

A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation

Reads0
Chats0
TLDR
In this paper, the stacking fault energy is shown to consist of both volume energy and surface energy contributions, and when the volume energy contribution is negative, the fault energy decreases with increasing fault thickness such that fault energy associated with the simultaneous dissociation of an appropriate group of dislocations can be zero or negative.
Abstract
Consideration of the martensitic nucleation process as a sequence of steps which take the particle from maximum to minimum coherency leads to the hypothesis that the first step in martensitic nucleation is faulting on planes of closest packing. It is further postulated that the faulting displacements are derived from an existing defect, while matrix constraints cause all subsequent processes to occur in such a way as to leave the fault plane unrotated, thus accounting for the observed general orientation relations. Using basic concepts of classical nucleation theory, the stacking fault energy is shown to consist of both volume energy and surface energy contributions. When the volume energy contribution is negative, the fault energy decreases with increasing fault thickness such that the fault energy associated with the simultaneous dissociation of an appropriate group of dislocations (e.g. a finite tilt boundary segment) can be zero or negative. This condition leads to the spontaneous formation of a martensitic embryo. For the specific case of the fcc → hcp martensitic transformation in Fe-Cr-Ni alloys, the defect necessary to account for spontaneous embryo formation at the observedM s temperatures may consist of four or five properly spaced lattice dislocations. Such defects are considered to be consistent with the known sparseness of initial martensitic nucleation sites.

read more

Citations
More filters
Journal ArticleDOI

Fe-Mn-Si-Cr-N形状记忆合金中fcc-hcp相变的细观力学

万见峰, +1 more
- 06 Mar 2013 - 
TL;DR: Based on the micro-elastic theory, Wang et al. as discussed by the authors calculated the elastic strain energy of single variant and multi-variants as well as the interaction energy between two variants in Fe-Mn-Si based shape memory alloys.
Journal ArticleDOI

Strain hardening analysis and deformation micromechanisms in high strength-high ductility metastable duplex stainless steels: Role of sustained stacking faults in the work hardening

TL;DR: In this article , a three-stage (I, II, III) strain hardening rate (SHR) was recognized in both alloys, and the involved mechanism(s) at each stage were investigated using extensive TEM and EBSD analysis.
References
More filters
Journal ArticleDOI

The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems

TL;DR: In this paper, it is shown that to answer several questions of physical or engineering interest, it is necessary to know only the relatively simple elastic field inside the ellipsoid.
Book

Theory of Dislocations

TL;DR: Dislocations in Isotropic Continua: Effects of Crystal Structure on Dislocations and Dislocation-Point-Defect Interactions at Finite temperatures.
Journal ArticleDOI

The scientific papers

J. Willard Gibbs
- 01 Dec 1908 - 
TL;DR: Physical and psychosocial factors associated with psychostimulant use in a nationally representative sample of French adolescents: Specificities of cocaine, amphetamine, and ecstasy use are studied.
Journal ArticleDOI

The crystallography of martensite transformations II

TL;DR: In this paper, the total strain in a martensite transformation was derived from the orientation relationship and the component strains, together with the correspondence, and the dimensions of the initial and final structures.
Related Papers (5)