scispace - formally typeset
Open AccessBook ChapterDOI

A Meshfree Method for Simulations of Interactions between Fluids and Flexible Structures

Reads0
Chats0
TLDR
In this article, a sheet of paper is modeled as a curve by the dynamical Kirchhoff-love theory and the external forces taken into account are gravitation and the pressure difference between upper and lower surface of the sheet.
Abstract
We present the application of a meshfree method for simulations of interaction between fluids and flexible structures As a flexible structure we consider a sheet of paper In a two-dimensional framework this sheet can be modeled as curve by the dynamical Kirchhoff-Love theory The external forces taken into account are gravitation and the pressure difference between upper and lower surface of the sheet This pressure difference is computed using the Finite Pointset Method (FPM) for the incompressible Navier-Stokes equations FPM is a meshfree, Lagrangian particle method The dynamics of the sheet are computed by a finite difference method We show the suitability of the meshfree method for simulations of fluid-structure interaction in several applications

read more

Content maybe subject to copyright    Report

S. Tiwari, S. Antonov, D. Hietel, J. Kuhnert, R. Wegener
A Meshfree Method for Simulations
of Interactions between Fluids and
Flexible Structures
Berichte des Fraunhofer ITWM, Nr. 88 (2006)

© Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2006
ISSN 1434-9973
Bericht 88 (2006)
Alle Rechte vorbehalten. Ohne ausdrückliche, schriftliche Genehmigung des
Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in irgendeiner
Form durch Fotokopie, Mikrofilm oder andere Verfahren zu reproduzieren
oder in eine für Maschinen, insbesondere Datenverarbeitungsanlagen, ver-
wendbare Sprache zu übertragen. Dasselbe gilt für das Recht der öffentlichen
Wiedergabe.
Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.
Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM können
bezogen werden über:
Fraunhofer-Institut für Techno- und
Wirtschaftsmathematik ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern
Germany
Telefon: +49 (0) 6 31/3 16 00-10 10
Telefax: +49 (0) 6 31/3 16 00-10 99
E-Mail: info
@
itwm.fraunhofer.de
Internet: www.itwm.fraunhofer.de

Vorwort
Das Tätigkeitsfeld des Fraunhofer Instituts für Techno- und Wirtschaftsmathematik
ITWM umfasst anwendungsnahe Grundlagenforschung, angewandte Forschung
sowie Beratung und kundenspezifische Lösungen auf allen Gebieten, die für Tech-
no- und Wirtschaftsmathematik bedeutsam sind.
In der Reihe »Berichte des Fraunhofer ITWM« soll die Arbeit des Instituts konti-
nuierlich einer interessierten Öffentlichkeit in Industrie, Wirtschaft und Wissen-
schaft vorgestellt werden. Durch die enge Verzahnung mit dem Fachbereich Ma-
thematik der Universität Kaiserslautern sowie durch zahlreiche Kooperationen mit
internationalen Institutionen und Hochschulen in den Bereichen Ausbildung und
Forschung ist ein großes Potenzial für Forschungsberichte vorhanden. In die Be-
richtreihe sollen sowohl hervorragende Diplom- und Projektarbeiten und Disser-
tationen als auch Forschungsberichte der Institutsmitarbeiter und Institutsgäste zu
aktuellen Fragen der Techno- und Wirtschaftsmathematik aufgenommen werden.
Darüberhinaus bietet die Reihe ein Forum für die Berichterstattung über die
zahlreichen Kooperationsprojekte des Instituts mit Partnern aus Industrie und
Wirtschaft.
Berichterstattung heißt hier Dokumentation darüber, wie aktuelle Ergebnisse aus
mathematischer Forschungs- und Entwicklungsarbeit in industrielle Anwendungen
und Softwareprodukte transferiert werden, und wie umgekehrt Probleme der Pra-
xis neue interessante mathematische Fragestellungen generieren.
Prof. Dr. Dieter Prätzel-Wolters
Institutsleiter
Kaiserslautern, im Juni 2001


A Meshfree Method for Simulations of
Interactions between Fluids and Flexible
Structures
Sudarshan Tiwari, Sergey Antonov, Dietmar Hietel, org Kuhnert,
Ferdinand Olawsky and Raimund Wegener
Fraunhofer-Institut ur Techno- und Wirtschaftmathematik (ITWM)
Gottlieb-Daimler-Straße, Geb. 49, D-67663 Kaiserslautern, Germany
tiwari@itwm.fraunhofer.de
Summary. We present the application of a meshfree method for simulations of
interaction between fluids and flexible structures. As a flexible structure we consider
a sheet of paper. In a two-dimensional framework this sheet can be modeled as curve
by the dynamical Kirchhoff-Love theory. The external forces taken into account are
gravitation and the pressure difference between upper and lower surface of the sheet.
This pressure difference is computed using the Finite Pointset Method (FPM) for
the incompressible Navier-Stokes equations. FPM is a meshfree, Lagrangian particle
method. The dynamics of the sheet are computed by a finite difference method.
We show the suitability of the meshfree method for simulations of fluid-structure
interaction in several applications.
Key words: Meshfree Method, FPM, Fluid Structure Interaction, Sheet of
Paper, Dynamical Coupling
1 Introduct ion
There exists a wide range of problems where the motion of flexible structures
is driven by a fluid flow. Such kind of problems are in printing processes the
prediction of the fluttering of a thin sheet [11] or in bio-mechanics the opening
and closing behavior of aortic heart valves [2]. In general, the structure is
considered as a moving wall and its dynamics are described in a Lagrangian
framework. Therefore, it is suitable to use a Lagrangian formulation also for
the fluid. Whenever the structure moves rapidly, mesh based methods like
finite volume or finite element methods are limited due to grid adaption by re-
meshing during the simulation. It requires the use of interpolation techniques
to recover the fluid dynamical variables on the new mesh. This procedure not
only introduces artificial diffusivity, but is also problematic with respect to

Citations
More filters

Eine Übersicht zum Scheduling von Baustellen

T. Hanne
TL;DR: In this paper, Brucker et al. present a Dokument, in which aspekte der formalen zeitlichen planung bzw. des Scheduling fur Bauprojekte anhand ausgewahlter Literatur diskutiert.
Journal ArticleDOI

A regularized Lagrangian finite point method for the simulation of incompressible viscous flows

TL;DR: In this paper, a regularized Lagrangian finite point method (RLFPM) is presented for the numerical simulation of incompressible viscous flows and the problem of extra diffusion caused by regularization is discussed.
Journal ArticleDOI

Two-dimensional numerical simulation of heat transfer with moving heat source in welding using the Finite Pointset Method

TL;DR: In this article, the use of the Finite Pointset Method (FPM) for the numerical simulation of heat transfer involving a moving source which are present in welding materials processing is presented.
Journal ArticleDOI

On the Truly Meshless Solution of Heat Conduction Problems in Heterogeneous Media

TL;DR: In this article, a truly meshless method based on the weighted least squares (WLS) approximation and the method of point collocation is proposed to solve heat conduction problems in heterogeneous media.
Journal ArticleDOI

Numerical simulation of coupled fluid flow and heat transfer with phase change using the Finite Pointset Method

TL;DR: In this article, the Finite Pointset method is applied to solve the involved partial differential equations where the corresponding classical or strong formulation is directly used instead of the corresponding weak form as needed for some other mesh-free approaches.
References
More filters
Journal ArticleDOI

Numerical solution of the Navier-Stokes equations

TL;DR: In this paper, a finite-difference method for solving the time-dependent Navier-Stokes equations for an incompressible fluid is introduced, which is equally applicable to problems in two and three space dimensions.
Book

Nonlinear problems of elasticity

TL;DR: This book discusses the theory and applications of Bifurcation Theory and its applications to Elasticity, as well as problems in Nonlinear Elasticity and Dynamical Problems.
Journal ArticleDOI

The finite difference method at arbitrary irregular grids and its application in applied mechanics

TL;DR: The FIDAM code as discussed by the authors is a system of computer programs designed for the solution of two-dimensional, linear and nonlinear, elliptic problems and three-dimensional parabolic problems.
Journal ArticleDOI

A fictitious domain/mortar element method for fluid-structure interaction

TL;DR: In this paper, a new method for the computational analysis of fluid-structure interaction of a Newtonian fluid with slender bodies is developed, which combines ideas of the fictitious domain and the mortar element method by imposing continuity of the velocity field along an interface by means of Lagrange multipliers.
Book ChapterDOI

Multiphase Flow and Heat Transfer in Porous Media

TL;DR: The chapter concludes that the studies of heat transfer in multicomponent porous media systems are only at the initial stage, and very extensive research is needed in this technologically important and fundamentally intricate subfield ofHeat transfer.
Related Papers (5)
Frequently Asked Questions (15)
Q1. What are the contributions mentioned in the paper "A meshfree method for simulations of interactions between fluids and flexible structures" ?

In this paper, the Finite Pointset Method ( FPM ) is used to handle a wide range of dynamical fluid structure interactions in a two-dimensional framework that couples FPM with the dynamics of a onedimensional sheet. 

Future work will be the extension of the method to three dimensional problems. 

Since the sheet of paper has very small bending stiffness and low weight, the grid size as well as the time step for the simulation of its dynamics should be very small. 

Use the new positions and velocities of boundary particles of the prior step to solve the Navier-Stokes equations and obtain new positions xn+1 and flow fields vn+1 and pn+1(iv) 

To ensure consistency in two dimensions the number m of these particles should be at least 6 and they should neither be on the same line nor on the same circle. 

Then all inner particles are marked with the orientation +1 if they are in the neighborhood of a boundary particle of orientation +1 and if they lie on the half plane defined by the normal of this boundary particle. 

Either an end is fixed with given position and direction byr(0, t) = r0(t), ∂sr(0, t) = e0(t) (6)or it is free with Neumann boundary conditions given by∂ssr(L, t) = 0, ∂sssr(L, t) = 0, T (L, t) = 0. (7)In some applications the sheet of paper can hit a wall. 

The resulting system for the unknowns a = (ψx, ψy, ψxx, ψxy, ψyy)T is not under-determined for m > 5 but can in general only be solved as a least squares solution by minimizing the error e in the resulting systeme = 

It is found that the method presented in [9] is more stable and that Neumann conditions can be easily included in the approximation. 

This procedure not only introduces artificial diffusivity, but is also problematic with respect toaccuracy, robustness and efficiency. 

The resulting system for inner grid points i = 1, · · · , N − 1 is given byω rn+1i − 2 rni − rn−1iΔt2 = 1 Δs[ T n+1i+ 12 (∂sr)n+1i+ 12 − T n+1 i− 12 (∂sr)n+1i− 12] −BΔs [ (∂sssr)n+1i+ 12 − (∂sssr)n+1i− 12 ] + [p]ni n n i + ω g. (12)Here, the normal vector ni is orthogonal to the tangential vector defined by the average of (∂sr)i± 12 . 

The dynamics of the sheet of paper is given by balancing the acting forces with the accelerationω ∂ttr(s, t) = ∂s[T (s, t)∂sr(s, t)] − B ∂ssssr(s, t) + [p] n + ω g. (4)Here, the unknown tension T acts as a Lagrangian multiplier referencing to the additional constraint of in-extensibility‖∂sr(s, t)‖2 = 1. (5)The base weight ω and the bending stiffness B are given material constants of the sheet of paper. 

in order to obtain the accuracy of the weighted least squares approximation the scheme guarantees everywhere a minimum number of neighbors. 

The solution now minimizes the functionalJ̃ = m+2∑ i=1 wie 2 i = (M̃ ã − b̃)T W̃ (M̃ ã − b̃) (27)with W̃ = diag (w1, . . . , wm, 1, 1) and wi = w(xi −x; h) for i = 1, . . . , m while wm+1 = wm+2 = 1. Formally, the solution of this minimization problem can be written asã = (M̃T W̃M̃)−1(M̃T W̃ )b̃. (28)The value of ψ is the only relevant component of the solution ã. 

In the second row the authors have plotted the pressure (left), with values varying from 0.29512 Pa (blue) to 0.84271 Pa (red) and the velocity field (right) with maximum value 0.059941 m/s (red) at time t = 0.8377 s.